您的位置:群走网>教学资源>说课稿>《方程》说课稿
《方程》说课稿
更新时间:2024-09-30 04:58:43
  • 相关推荐
《方程》说课稿(15篇)

  作为一位无私奉献的人民教师,时常需要用到说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。如何把说课稿做到重点突出呢?下面是小编为大家收集的《方程》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

《方程》说课稿1

  一、说教材

  (1)本课在在教材中的地位和作用

  《认识一元二次方程》是北师大版九年级上册第二章第一节的内容,主要使学生了解一元二次方程的概念,掌握一般式ax2+bx+c=0(a≠0)及相关的概念,并会应用一元二次方程概念解决一些简单题目.本节内容也是学生学习一元二次方程解法的基础,是中学数学概念教学的主要内容,在初中代数中占有重要的地位.实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固.同时,一元二次方程也是以后学习(函数、高次方程、二次曲线等内容)的基础.本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  (2)教学目标

  知识与能力

  使了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;

  应用一元二次方程概念解决一些简单题目.

  过程与方法.

  通过探究实际问题来发现新知,培养学生的观察能力和思维能力。通过探索方程的解的过程,发展学生估算的意识和能力。

  情感态度与价值观

  通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.通过对一元二次方程概念的教学,培养学生严谨的科学态度;让学生体验数学的简洁、对称、和谐等美的特征。

  (3)教学重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  (4)教学难点:正确理解和掌握一般形式中的a≠0,“项”和“系数”.

  二、说教法

  本课我主要以“复习提问--创设情景——引导探究——类比归纳——拓展延伸”为教学主线,教学方法以小组讨论法、讲解法、练习法为主,启发和引导贯穿教学始终,通过学生小组讨论、师生共同研究探讨,体现以教师为主导、学为主体、练为主线的教学过程。

  三、说学法

  学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。根据学生的学习基础和认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法,引导学生掌握探究法、交流合作法、归纳法。

  四、说教学过程

  (一)、复习旧知

  1、什么叫方程?什么叫方程的解?

  2、举例说明什么是一元一次方程?

  (活动目的:复习已学知识,为本节课的学习打下基础。)

  (二)、问题情境6分钟

  1、已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  2、一个正方形的面积的2倍等于15,这个正方形的边长是多少?设边长为x,可列方程________.

  3、一个数比另一个数大3,且两个数之积为0,求这两个数。设较小的数为x,可列方程________.

  (设计意图:因为数学来源与生活,学习数学的目的就是为了解决问题,所以以学生解决问题为素材创设情景,易于被学生接受、感知。通过对相关问题的解决,帮助学生从实际问题中提炼出数学问题,培养学生的抽象思维能力。情景分析中学生自然会想到用方程来解决问题,但所列的.方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。)

  (三):探索新知

  1、学生活动:分组讨论口答下面问题.12分钟

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)是整式方程吗?

  老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;

  (3)都整式方程.归纳一元二次方程的概念:结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。

  (设计意图:关注学生对概念的理解,通过具体的例子来归纳一元二次方程的概念,加深对概念的理解。活动的预期效果:学生基本能识别一元二次方程及各个部分。)

  2、因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  3范例讲解

  例1:判断下列方程是否为一元二次方程:5分钟

  (教学目的:掌握一元二次方程的定义,会判断一元二次,加深学生对概念的理解。)

  例2.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.6分钟

  分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  (设计目的:问题中学生对于化成一元二次方程的一般形式感觉困难不大,但写出它的二次项系数、一次项系数和常数项时,部分学生可能容易忽视符号,作为第一次学习,这是难免的。当然,教学中也可以给出各项系数。)

  四:课堂练习:5分钟

  1:一元二次方程的二次项系数、一次项系数和常数项.

  (4)(5)

  2、下列方程中,关于x的一元二次方程是()

  五、归纳小结(学生总结,老师点评)3分钟

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。

  (设计意图:让学生学会自己梳理知识要点,提高归纳总结的能力。

  活动的实际效果:绝大多数学生能自己归纳出本节的知识要点,也清楚自己的困惑和存在的问题。)

  六、课后作业

  P49123

  七、板书设计

  (1)都只含一个未知数x;

  (2)它们的最高次数都是2次的;

  (3)都整式方程.

  ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1例2

  (1)本课在在教材中的地位和作用

  《认识一元二次方程》是北师大版九年级上册第二章第一节的内容,主要使学生了解一元二次方程的概念,掌握一般式ax2+bx+c=0(a≠0)及相关的概念,并会应用一元二次方程概念解决一些简单题目.本节内容也是学生学习一元二次方程解法的基础,是中学数学概念教学的主要内容,在初中代数中占有重要的地位.实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固.同时,一元二次方程也是以后学习(函数、高次方程、二次曲线等内容)的基础.本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  (2)教学目标

  知识与能力

  使了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;

  应用一元二次方程概念解决一些简单题目.

  过程与方法.

  通过探究实际问题来发现新知,培养学生的观察能力和思维能力。通过探索方程的解的过程,发展学生估算的意识和能力。

  情感态度与价值观

  通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.通过对一元二次方程概念的教学,培养学生严谨的科学态度;让学生体验数学的简洁、对称、和谐等美的特征。

  (3)教学重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  (4)教学难点:正确理解和掌握一般形式中的a≠0,“项”和“系数”.

  二、说教法

  本课我主要以“复习提问--创设情景——引导探究——类比归纳——拓展延伸”为教学主线,教学方法以小组讨论法、讲解法、练习法为主,启发和引导贯穿教学始终,通过学生小组讨论、师生共同研究探讨,体现以教师为主导、学为主体、练为主线的教学过程。

  三、说学法

  学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。根据学生的学习基础和认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法,引导学生掌握探究法、交流合作法、归纳法。

  四、说教学过程

  (一)、复习旧知

  1、什么叫方程?什么叫方程的解?

  2、举例说明什么是一元一次方程?

  (活动目的:复习已学知识,为本节课的学习打下基础。)

  (二)、问题情境6分钟

  1、已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  2、一个正方形的面积的2倍等于15,这个正方形的边长是多少?设边长为x,可列方程________.

  3、一个数比另一个数大3,且两个数之积为0,求这两个数。设较小的数为x,可列方程________.

  (设计意图:因为数学来源与生活,学习数学的目的就是为了解决问题,所以以学生解决问题为素材创设情景,易于被学生接受、感知。通过对相关问题的解决,帮助学生从实际问题中提炼出数学问题,培养学生的抽象思维能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。)

  (三):探索新知

  1、学生活动:分组讨论口答下面问题.12分钟

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)是整式方程吗?

  老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;

  (3)都整式方程.归纳一元二次方程的概念:结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。

  (设计意图:关注学生对概念的理解,通过具体的例子来归纳一元二次方程的概念,加深对概念的理解。活动的预期效果:学生基本能识别一元二次方程及各个部分。)

  2、因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  3范例讲解

  例1:判断下列方程是否为一元二次方程:5分钟

  (教学目的:掌握一元二次方程的定义,会判断一元二次,加深学生对概念的理解。)

  例2.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.6分钟

  分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  (设计目的:问题中学生对于化成一元二次方程的一般形式感觉困难不大,但写出它的二次项系数、一次项系数和常数项时,部分学生可能容易忽视符号,作为第一次学习,这是难免的。当然,教学中也可以给出各项系数。)

  四:课堂练习:5分钟

  1:一元二次方程的二次项系数、一次项系数和常数项.

  (4)(5)

  2、下列方程中,关于x的一元二次方程是()

  五、归纳小结(学生总结,老师点评)3分钟

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。

  (设计意图:让学生学会自己梳理知识要点,提高归纳总结的能力。

  活动的实际效果:绝大多数学生能自己归纳出本节的知识要点,也清楚自己的困惑和存在的问题。)

  六、课后作业

  P49123

  七、板书设计

  (1)都只含一个未知数x;

  (2)它们的最高次数都是2次的;

  (3)都整式方程.

  ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1例2

  一、说教材

《方程》说课稿2

尊敬的各位评委,老师:

  大家好!我是来自瓦室初级中学的教师刘永军。今天我要为大家讲的课题是华师大版义务教育课程标准实验教科书七年级数学(下册)第6章第1节《从实际问题到方程》,总共1课时。

  下面,我将从以下六个方面对本节课的设计进行说明:

  一、教材分析

  1、教材的地位与作用

  《数学课程标准》对本章的要求:学生探索数、形及实际问题中蕴含的关系和规律,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。

  在教学中应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系。

  解一元一次方程是有理数和整式知识的进一步应用。它是初等数学的一项基本知识和技能,也是今后学习一次方程组、一元一次不等式及一元二次方程的基础。一元一次方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的开端,也是让学生体会数学价值观,增强学数学、用数学意识的重要题材。教材中渗透的数学建模思想和类比、化归、归纳等数学思想方法,都是学生今后学习和工作中必备的数学修养与素质。

  2、教学内容

  本章的主要内容有两个方面:①一元一次方程的基本概念及其解法;②一元一次方程在实际问题中的应用、实践与探索。教材注重了两者的有机结合,让学生经历和体会从实际问题中抽象出数学模型,并回到世界问题中解释和检验的过程。这是初等数学的基本运算工具,也是提高学生思维能力和分析问题、解决问题能力的重要载体。教材从实例出发,引入一元一次方程的有关概念,讨论一元一次方程的解法及其应用,注重渗透数学建模的思想,培养学生运用数学知识解决实际问题的意识与能力。

  二、学情分析

  七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。

  三、教学目标、重点、难点

  知识与技能:

  能辨别出方程。

  能判断一个数值是否是某个方程的解。

  过程与方法:

  以求解一个实际问题为切入点,经历实践、思考、探索、讨论、交等活动,培养解决问题的兴趣和能力。

  探索具体问题中的数量关系和变化规律用方程进行描述,初步体验方程是刻画现实世界的一个有效的数学模型,体会数学的应用价值。

  情感态度与价值观:

  通过自主学习活动逐步养成良好的学习习惯,提高自主学习能力和合作精神;

  体验在生活中学数学、用数学的价值,感受学习数学的乐趣。

  重点:

  寻求实际问题中的相等关系并用方程描述。

  让学生初步感受方程是解决问题的重要方法。

  难点:

  寻找实际问题中的相等关系以及理解方程的解。

  四、教学方法

  教法分析:课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。

  学法分析:倡导自主探究的学习方法。 学生在自主探究的过程中提升了观察归纳的能力,进而达到对知识的“发现”和接受的目的。

  五、教学过程

  根据以上的理念,结合本课的特点,我设计了以下五个教学环节:

  (一)、情景引入

  问题:某中学初一级师生共328人,乘车外出春游,已有2辆校车可乘64人,还需租用44座的客车多少辆?

  首先用算术方法求解:(328-64)÷44=6 反思,有没有其他的解法,我们一起来分析一下:

  相等关系

  (坐校车的人数) + (坐租用客车的人数) = 全部春游的人数

  所以我们设租的车辆数为x,则得出方程:64 + 44x= 328

  【设计意图】让学生通过观察、分析,利用算术方法和利用找出相等关系设未知数列方程的方法横向比较两者对于解题来说,它们具有共同的'作用。

  问题:我今年45岁,你们13岁,那么经过几年你们的年龄正好是我的三分之一?

  用算术方法求解:

  1年后,老师的年龄是45+1=46岁,同学们的年龄长了没有?13+1=14。14≠46÷3

  2年后,老师的年龄是45+2=47岁,同学们的年龄长了没有?13+2=15。15≠47÷3

  3年后,老师的年龄是45+3=48岁,同学们的年龄长了没有?13+3=16。16=48÷3

  所以说答案是3年。

  现在我们来仔细讨论这个问题:

  45+1=46 ?????13+1=14 ????14≠46÷3

  45+2=47 ?????13+2 =15 ????15≠47÷3

  45+3=48 ?????13+3=16 ????16=48÷3

  相等关系

  相同的可变量

  所以我们设经过x年,你们的年龄正好是我的三分之一,则得出方程13+x =(45+x)÷3

  【设计意图】再次让学生通过观察、分析,利用算术求解的方法和找相等关系设未知数列方程的方法可以看出哪个更方便,书写更直接,以及怎么样找出相等关系。

  (二)、应用巩固

  1、例题:

  七年级(1)班共有40人,男生比女生多4人,你知道男生、女生各有多少人吗?

  (1)、如果设女生有x人,那么可得方程_______________.

  (2)、如果设男生有x人,那么可得方程_______________.

  (教师在黑板上写出规范的解题格式。)

  【设计意图】培养学生利用方程的思想解决问题的习惯,找出实际问题中的等量关系,这是解决这类问题的关键。通过两个不同的未知数的设立,明确未知数的实际意义,正确列出方程,并注意解题的步骤。

  2、归纳:

  通过上面的学习,你觉得我们怎样规范地列方程来解决实际问题呢?从问题到方程的关键步骤是什么?

  (1)、审题并找出等量关系(2)、设未知数(3)、列方程关键是找到数量之间的相等关系。

  【设计意图】引导学生结合前面学习的感受,交流发言,培养学生总结反思的好习惯。帮助学生形成知识体系,全面深刻地掌握从问题到方程的解题步骤。

  3、练习:

  用方程描述下列问题中数量之间的相等关系:

  (1)、一头半岁的蓝鲸体重22吨,90天后体重为30.1吨,如果设蓝鲸体重平均每天增加x吨,那么可得方程__________________.

  (2)、把50kg大米分装在3个同样大小的袋子里,装满后还剩余5kg,如果设每个袋子可装大米xkg,那么可得方程__________________.

  (3)、据资料,海拔每升高100m,气温下降0.60C。现测得某山山脚下的气温为15.20C,山顶的气温为12.40C。如果设这座山高为xm,那么可得方程__________________.

  学生上黑板板演,教师在下面巡视其他学生的解题情况,关注学生是否能够很顺利的寻找到问题中所存在的等量关系,并适当加以指导。

  【设计意图】以上的练习,主要目的是考查学生是否会灵活运用。

  (三)、思维拓展

  军军今年5岁,爸爸今年32岁,如果设x年以后军军的年龄是爸爸年龄的,那么可得方程为__________________.

  七(1)班分两组参加学校某项活动,第一组16人,第二组28人,现在要重新分组,使两组人数相同。如果从第二组调x人到第一组去,那么怎么列方程?

  变一变:

  若现在重新分组,需要从第一组调多少人到第二组,能使第二组人是第一组的3倍?

  请选用以下提供的信息,编写具有实际意义的应用题。

  ①香蕉3元/千克 ????②橙子5元/千克 ???③用15元钱买水果 ??④共买10千克水果

  教师根据学生的掌握情况,灵活地选用这三题。

  【设计意图】我的教法是让学生在主动参与到数学活动中,学得深透,练得扎实,让不同层次的学生将得到不同的提高。通过变式教学,可使学生所学的知识得到巩固与提高,一定程度上培养学生的创造才能。让学生出题、再解题的意义在于进一步巩固所学知识,同时体会数学来自于生活,应用于生活,生活中处处有数学,加深对学好数学必要性的认识。

  (四)、学习的感悟

  1、本节课,你有哪些收获和体会?还有什么疑惑?

  2、首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题都转化为代数问题;最后,把所有的代数问题转化为解方程。

  【设计意图】1、请学生按这一模式进行小结,培养学生学习——总结——学习——反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。

  2、以数学大师笛卡尔的名言小结,“夸大”方程的作用在学生心目中产生名人效应,对今后方程的学习与应用更加充满兴趣,以期提高学生的数学文化素养。

  (五)、课后延伸

  课本P3 /习题6.1的1、2、3题。

  请你根据方程:2x+3(x–1)=27,自编一道应用题。(选做题)

  【设计意图】

  1、进一步巩固和提高所学知识

  2、及时反馈、查漏补缺

  3、体现层次性与开放性

  六、设计说明

  1、板书设计

  4.1 从问题到方程

  情景一……

  情景二……

  例题……

  归纳……

  练习……

  多媒体演示区

  这样设计便于突出知识目标。

  2、现代数学教学观念要求学生从“学会”向“会学”转变,本课从探究到应用都有意识地营造一个较为自由的空间,让学生能积极地动手、动口、动脑,使学生在学知识的同时形成方法。整个教学过程突出了三个注重:

  ①注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣。

  ②注重师生间、同学间的互动协作、共同提高。

  ③注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用。

《方程》说课稿3

  一、说教材的地位。

  本节是在前面已经讨论过由实际问题列一元一次方程和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题.本节的问题情境与实际情况更接近,因此具有一定难度,根据本例题特点,我设计如下教学目标:在教学过程中理解有关商品销售中所涉及的公式,进而培养学生走向社会,适应社会的能力.

  教学重点和难点、关键:

  重点:进一步体现一元一次方程与实际的密切关系,渗透数学建摸思想,培养运用一元一次方程分析和解决实际问题的能力.

  难点是正确地列方程。

  关键是弄清问题背景,分析清楚有关数量关系,按问题找出可以作为列方程依据的主要相等关系.

  二、说教学方法。

  在教学过程中,主要采用启发式教学和合作探究式教学方法的综合运用。

  三、说学生的学法。

  学生根据教材中的问题,采用小组合作探究,从而解决问题,通过教师引领,学生主动参与,从而顺利而充满激情地完成教学.

  四、设计思路。

  我利用提纲中的几个简单的.习题,充分发挥学生的合作交流的意识.让学生体会数学在实际生活中的应用.最后通过研究书中的盈亏问题,可以增加学生的经济知识和经营意识.使他们能更了解市场运作.

  五、教学过程

  整个教学过程都以小组合作探究的形式进行,充分体现小组合作探究的作用.教师利用提纲中的习题由简单到复杂,采用层层深入的教学模式。整个过程都是由教师适当引导学生合作完成,课堂气氛比较活跃,学生的参与度很高。

《方程》说课稿4

  一、教材内容分析

  “曲线与方程”这节课是一节承上启下的内容,既对必修2中解析几何初步学习进行了延伸,又为后面学习圆锥曲线做好了铺垫。

  二、学情分析

  学生在必修2中已经学过直线和圆的方程,体会到了解析几何的基本方法——坐标法的好处。但没有从理论的角度探索曲线与方程的关系,表现在求解一些轨迹问题或曲线方程的时候常常出现范围错误的现象。

  三、教学重点、难点

  重点:曲线的方程和方程的曲线的定义。

  难点:运用定义验证曲线是方程的`曲线,方程是曲线的方程。

  四、教学目标

  1.知识与技能:知道曲线的方程和方程的曲线的定义。给出一些熟悉的曲线的部分图象后能确定变量的取值范围。能够根据所给的方程画出相应的图形。

  2.过程与方法:让学生参与教学的全过程,通过对定义的总结与应用,进一步体会数形结合的思想方法。

  3.情感态度与价值观:通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受学习的乐趣,提高学生的兴趣,增强学生的信心。

  五、教学方法

  课堂教学中坚持以学生为主体,教师为主导,思维训练为主线,能力培养为主攻的原则。我采用引导发现、问题引领等方法。

  六、媒体资源选用

  采用多媒体辅助教学,PPT制作课件,利用天宫一号的视频来让学生初步体会曲线与方程的关系。

  七、教学流程

  为突出重点,突破难点,完成教学目标,我设计的教学流程如下:

  首先利用天宫一号的目标飞行器成功发射的模拟动画,使学生初步体会曲线上的点与方程的解是一一对应的关系,同时体会数学的应用价值。

  我引导学生尝试用自己的语言归纳什幺叫曲线的方程,什幺叫方程的曲线,在学生自我归纳的基础上,教师给出标准的定义将其感性认识理性化。

  为了帮助学生理解定义,我又从集合、充要条件两个不同角度进行剖析,也为后面解决问题做好了铺垫。

  为了检测学生对定义的理解和应用,在习题配备上,我采用了二、二、三的结构。

  首先给出两组练习,并设置问题。接着设置两道例题,让学生掌握利用定义判断及证明方程为曲线的方程。通过师生互动完成例题的证明过程,进一步加深学生对定义的理解,培养学生书面表达的严谨和简洁。

  最后,让学生归纳、总结出本节课所学的主要内容,老师作适当点拨引导,培养学生的概括能力、表达能力和自我获取知识的能力,并布置课后作业。

  八、教学评价

  教学过程中适时地进行生生互评、师生互评。在课堂联系阶段利用投影仪展示学生的作业,做到现做现评。

《方程》说课稿5

  一、教材分析,学情解析,目标定位

  (一)教材分析:

  《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。

  《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

  (二)教学目标:

  结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:

  1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。

  2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。

  3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。

  (三)教学重难点

  列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。

  基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。

  (四)学情分析:

  课前我们对学生进行了调研,调研内容主要有三项:

  一、求未知数

  这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。

  二、给式子分类,并写出每类的特点。

  设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。

  三、你们在生活中见过与跷跷板类似的物品吗?

  设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。

  (五)教法:

  新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:

  1、用直观的操作和演示,让每位学生理解和归结出结论。

  2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

  3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

  (六)、学法

  为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

  二、教学过程

  教学活动主要安排了五个环节:

  1、创设情景,抽象出等量关系,理解等式的性质

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。

  活动一:感知平衡,体会等式含义,理解等式性质。

  课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的.性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。

  活动二:观察发现,抽象出不同的式子

  创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。同时也为下一个教学环节——给式子分类做好准备。

  2.引导分类,抽象出方程的意义

  运用刚才得出的式子进行分类,并让学生说说分类标准,然后从学生按照等式不等式的标准分类的教学资源中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,找到方程的特点,从而进一步得出方程的意义。在分类的过程中,尊重学生的想法,肯定他们分类的方法。这样的设计主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

  3.讨论比较,辨析、概念——等式与方程的关系

  为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过同桌合作用自己的方法创作“方程”与“等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。。这是一道富有思维容量的习题,不但锻炼了学生的思维,培养了学生思维的灵活性和深刻性,而且能激发学生的创新意识,使学生的积极性、创造性得到保持与发展,同时渗透集合思想。

  4.巩固深化,拓展思维——练习

  在这一环节中,我们设计了“介绍方程”、“写方程”和“判断方程”三个活动。为了激发学生学习的兴趣,我们设计了“如果你是方程,你怎样介绍自己”之后让学生自己写一个方程,这样一个介绍,一个练写,不仅使学生爱做,而且还让学生进一步理解了方程的意义。然后让学生看式子进行判断,辨析;出示“方程一定是等式,等式也一定是方程”这句话让学生分析这句话对吗?说出理由。通过这些活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是方程的判断,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,方程与等式的异同,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。

  5.小结新知,明确收获

  让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。

《方程》说课稿6

  一、教学目标

  (1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推

  导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

  (2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探

  索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

  (3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

  二、教学重点、难点

  (1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

  (2)教学难点:椭圆标准方程的建立和推导。

  三、教学过程

  (一)创设情境,引入概念

  1、动画演示,描绘出椭圆轨迹图形。

  2、实验演示。

  思考:椭圆是满足什么条件的点的轨迹呢?

  (二)实验探究,形成概念

  1、动手实验:学生分组动手画出椭圆。

  实验探究:

  保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

  思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

  2、概括椭圆定义

  引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

  教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

  思考:焦点为的椭圆上任一点M,有什么性质?

  令椭圆上任一点M,则有

  (三)研讨探究,推导方程

  1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

  2、研讨探究

  问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有

  ,尝试推导椭圆的方程。

  思考:如何建立坐标系,使求出的方程更为简单?

  将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

  方案一方案二

  按方案一建立坐标系,师生研讨探究得到椭圆标准方程

  =1(),其中b2=a2-c2(b>0);

  选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。

  教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

  (四)归纳概括,方程特征

  1、观察椭圆图形及其标准方程,师生共同总结归纳

  (1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

  (2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

  (3)椭圆标准方程中三个参数a,b,c关系:;

  (4)椭圆焦点的位置由标准方程中分母的大小确定;

  (5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

  2、在归纳总结的基础上,填下表

  标准方程

  图形a,b,c关系焦点坐标焦点位置

  在x轴上

  在y轴上

  (五)例题研讨,变式精析

  例1、求适合下列条件的椭圆的标准方程

  (1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。

  (2)两焦点坐标分别是,并且椭圆经过点。

  例2、(1)若椭圆标准方程为及焦点坐标。

  (2)若椭圆经过两点求椭圆标准方程。

  (3)若椭圆的一个焦点是,则k的值为。

  (A)(B)8(C)(D)32

  例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。

  (六)变式训练,探索创新

  1、写出适合下列条件的椭圆标准方程

  (1),焦点在x轴上;

  (2)焦点在x轴上,焦距等于4,并且经过点P;

  2、若方程表示焦点在y轴上的椭圆,则k的范围。

  3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。

  4、已知椭圆的焦距相等,求实数m的值。

  5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

  6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。

  (七)小结归纳,提高认识

  师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

  (八)作业训练,巩固提高

  课本第96页习题§8。1第3题、第5题、第6题。

  课后思考题:

  1、知是椭圆的两个焦点,AB是过的弦,则周长是。

  (A)2a(B)4a(C)8a(D)2a2b

  2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜

  率之积等于,求顶点C的轨迹方程。

  2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

  教学设计说明

  椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的`学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

  椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

  椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

  设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

《方程》说课稿7

  我说课的题目是《方程的意义》,下面我和大家汇报一下我的设想。

  我从教材、教学流程、教法学法、板书设计、学习评价这几个方面来谈一谈。

  首先,说教材。本课的内容选自人教版小学数学五年级上册教材53-54页的《方程的意义》。课程标准把“式与方程”作为义务教育阶段培养学生的数感、符号意识、模型思想及发展学生的应用意识和创新意识,帮助学生理解表达具体情境中的数量关系的重要学习内容,《方程的意义》这部分内容的学习是在学生已初步学习了一些代数知识,如:用字母表示数,用字母表示运算定律和计算公式,用含有字母的式子表示数量关系等基础上进行教学的,这些都为本课的学习提供了知识铺垫。体现了从具体到抽象,由浅入深的设计思路。《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

  根据对教材的初步分析与理解,结合五年级学生的认知规律,我将本课的教学目标定为使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系;使学生经历从生活情境到方程模型的构建过程,使学生在观察、描述、分类、抽象、交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感;让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系。

  根据教学目标,我将本课的重点定为方程意义的理解以及在具体情境中建立方程的模型。

  另外,根据学生已有知识经验,很容易将列方程时的数量关系与列算式时的思维过程混淆起来,所以我觉得本课的难点是了解等式与方程的关系。

  在教学信息和感知材料的呈现上,我选用多媒体演示的方法,这样更直观、易懂。在教学前,我为学生准备了各种含有未知数和不含未知数的等式与不等式的贴纸。 结合五年级学生的认知水平和年龄特点,我将本课的教学设计为五个环节。

  第一个环节:创设情境,生成问题

  学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助天平首先让学生体会等式的含义。 活动:感知平衡,体会等式含义。(1分钟)

  课件出示一架天平,在天平一边放上一个梨,另一边放上两个西红柿,展示梨比西红柿重,两边一样重,西红柿比梨重,三种情况。让学生说一说看到的情况,可以用什么符号表示。通过这个环节,使学生对天平感兴趣,进而也会对今天将要学习的知识产生更大的期待。

  第二环节:探索交流,解决问题

  下面这个环节是课堂教学的中心环节。新课程标准指出:学生学习内容的呈现应采用不同的呈现方式,以满足多样化的学习需求。同时有效的学习活动不能单纯的依赖模仿和记忆,自主探索与合作交流是学生学习数学的重要方式。基于这些认识这一环节我将分以下几个层次进行教学。 将时间控制在13分钟左右。 本环节我设计了以下几个教学活动。

  活动一: 感知平衡,体会等式含义 6分钟

  情景1:演示天平左边放一个50克的砝码,右边放一个20克的砝码,请学生观察后说一说发现了什么,用一个式子表示天平现在所处的状态。(板书:50>20)

  情景2:演示天平左边放上一个50克的砝码和一个10克的砝码,右边放上三个20克的砝码,再次请学生用式子表示天平所处的状态。(板书:50+10=20x3)

  根据情境1、2的展示方式,让学生继续看课件写出算式来。在这里将以上的板书都做成贴片形式,可随时移动位置,方便下一环节进行分类。板书所有式子如下:

  50>20 50+10=20x3 X<200 X+10=200 4Y=500 50=3x+20 3a=4b

  通过天平称重的演示,让学生观察平衡与不平衡的各种生活现象,用生活原型帮助学生理解方程的意义,这样的设计激发了学生的.学习兴趣、培养了学生的观察能力和发现能力。 新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的。学生通过分类对比,形成表象,使学生亲历知识的生成过程。

  活动二:引导分类 5分钟

  在得出这么多的等式和算式后,我会说这些式子有些凌乱,同学们能不能掌握一个分类标准,小组合作,进行分类。 在这个问题上,我采取的是让学生先独立思考然后小组交流的形式进行,我根据学生思维特点采取由“ 扶 ”到“放”的策略,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。 交流汇报:(学生边说,教师边板书)

  不等式 等式 方程 有未知数 无未知数

  根据板书,我会提问:仔细观察一下,有没有相同的?

  学生会回答有,然后学生边归纳我一边板书这些相同的式子,接着我会追问这些相同的式子又具有什么相同的特点呢?学生通过观察会回答它们都是等式,它们都含有未知数。我会对他们的回答进行表扬,并强调像这样含有未知数的等式就是方程,

  方程是我们数学王国的新朋友。我们今天要学习的就是方程的意义。此时板书课题:方程的意义。

  接着,我让学生说说黑板上有的式子为什么不是方程,帮助学生巩固刚刚学习的知识。进一步强调含有未知数和是等式这两个条件缺一不可。这样的设计我主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

  第三环节:深入拓展,辨别概念 活动1:找方程(出示课件)

  3 x 42=126 5X>10 6+X=14 X+4<14 23="" m="5" 36-7="29">70 8+X

  6+X=14 3 x 42=126 36-7=29

  10÷m=5

  等式 方程方程的概念虽然概括出来了,但是理解消化它还需要继续学习。通过上面的分类讨论,学生初步了解了方程的意义,从这个意义中看出两个条件都是必要的,缺少任何一个都不是方程。所以在这一环节,我让学生找出课件中的等式与方程,并详细解释有的式子为什么不是等式,也不是方程。最后通过画图用2个集合圈来表示方程和等式关系,使学生对等式和方程有的关系有了更深的理解。达到这一步,才能算在学生的头脑中初步建立起了方程的概念。这个活动充分体现了学生的主体性,让学生在解决问题的过程中得到创造的乐趣。在寓教于乐中,学生享受着探索过程中的乐趣,也掌握了这个知识。 等式 方程

  第四环节:巩固练习,灵活运用20分钟开始 通过生活化的情境,加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、不同难度的练习题。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。展示课件,我说生活中还有许许多多的实际问题可用方程表示其数量关系,请同学们根

  据题目列出相应的方程来。

  (1)马老师坐大客车前往重庆办事,客车准载45人,坐了x个座位,还有10个空座位。 10+X=45 45-X=10

  (2)从石柱坐到重庆,总共240千米,马老师坐了4个小时,找出图中的相等数量关系。

  4X=240 (3)

  20-3X=2 (4)

  38+b=86 86-b=38 86-38=b 此时,题目难度升级,题中数学信息增加,我首先请学生齐读题目,帮助学生理解题目。 (5)

  我会鼓励学生说出自己的想法,找出等量关系,列出方程来。 1400+Y=2700

  1400-Y=100 (2)

  6X+48=96

  通过层层递进的练习,加深理解消化所学的知识,并应用所学知识灵活解决实际问题。进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

  第五环节:回顾整理,反思提升

  小结新知,明确收获让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。

  《新课标》中指出:重视学生已有经验,使学生体验从实际背景中抽象出数学问题,构建数学模型,寻找结果、解决问题。在本课教学中我主要采用探究性的学习方式,帮助学生建立表象,通过创设学生熟悉的生活情境,让学生在情境中,通过积极思考、自主探索、比较分析、合作交流等活动获取新知,培养孩子勤于动手动脑的能力;另一方面,为了充分发挥孩子的主体地位,我让学生经历独立思考、小组合作交流、展示等活动,引导学生掌握思考问题的方法。学生在学习了用字母表示数量关系以后通过一定的情景进一步学习方程的意义,列方程和用方程表示简单的数量关系。学生要在熟悉用含有字母的式子表示数量关系的基础上理解和掌握方程的意义。在天平的演示情景中观察,思考,说出等式的特点,并由分类等式、不等式,在等式中找出熟悉的等式和陌生的等式的相同点几不同点,使新旧知识衔接起来,从而推导方程的意义。之后通过合作、讨论、探究,理解方程和等式的关系,进一步理解方程的意义,在头脑中建立起“方程”的概念,并能扩展到根据方程的意义列出简单的方程和用方程表示简单数量关系。

  最后,来和大家说一说本课所用的学习评价,在本节课的教学中,我采用师评、互评、自评相结合的评价方法,我重视对学生探究能力、归纳能力、应用能力、语言表达能力以及学习热情的评价,我想以此来发挥评价的激励作用。

  我的说课到此结束,谢谢各位! 附:板书

  方程的意义

  不等式等式 方程 有未知数 无未知数

  50>20 50+10=20x3

  X<200 X+10=200 4Y=500 50=3x+20

  3a=4b

  

《方程》说课稿8

  我说课的课题是“椭圆及其方程——椭圆的标准方程的求法”,这是人教版高中数学(必修)数学第二册(上)第八章第一节“椭圆及其方程”的第二课时。下面我从说教材、说教法、说学法、说教学过程等几个环节,向各位评委谈谈我对这节课的理解和教学设计。

  ㈠ 说教材

  在第七章中,学生已学过利用坐标法求简单曲线的方程和利用方程去研究曲线的性质.在本章的学习中,对椭圆、双曲线、抛物线的研究都按照定义、方程、几何性质等几项来讨论,最后再将三者有机的柔和起来,其中椭圆为学习圆锥曲线的重点。从应用来看,圆锥曲线在生活、科学技术中有着广泛的应用。

  针对上述分析,结合高中数学课程标准和教材,同时考虑到高二学生的认知规律,特制定如下教学目标、教学重点和难点。

  ⑴ 教学目标

  ① 知识型目标:

  1.求椭圆的标准方程.

  2.求符合条件的点的轨迹方程.

  ② 能力型目标:

  1.掌握椭圆标准方程的特征量a、b的确定.方法

  2.掌握点的轨迹条件满足某曲线的定义时,用定义法求其标准方程.

  ③ 德育型目标:

  学会从具体问题中寻求关系建立数学模型.

  ⑵ 教学重点、难点

  求椭圆的标准方程是教学重点;定义法的.应用是教学难点。

  ㈡ 说教法和学法

  ⑴ 教学方法

  为更好的把握教学内容的整体性和联系性,在教学中以讨论、探索为核心构建课堂教学,培养学生应用数学的意识,提出有适度有启发的问题,引导学生积极探索、反思,切实改进学生的学习方法。

  ⑵ 学法指导

  ① 引导学生探索问题,帮助他们排除障碍,形成解题的通性通法。

  ② 使学生通过交流、探索、说过程培养学生分析问题和语言表达能力。

  ㈢ 说教学过程

  本节课我设计了六个环节,具体如下:

  ⑴ 把握基础知识,突出分类与整合的思想

  试题 1填空

  1. 椭圆的定义是--------------------------------------------------------------------

  数学语言是--------------------------------------------------------------------

  2. 焦点在x轴上的椭圆的标准方程是-----------------------------------------------------------

  3. 焦点在y轴上的椭圆的标准方程是-----------------------------------------------------------

  4. 椭圆的三个特征量是--------------------------,它们之间的关系是--------------------------

  . 通过直接提问,相互补充,完善规范知识的准确性;

  设计意图:再现基础知识,体会分类与整合。

  ⑵ 共同探索,发现规律

  试题 2 求适合下列条件的椭圆的标准方程.

  ⑴两焦点的坐标分别为(-4 ,0) ,(4 ,0) .椭圆上的P到两焦点的距离和等于10.

  ⑵两焦点的坐标分别为A(0 ,-2),B(0 ,2).并且椭圆过P(-3/2,5/2).

  通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想。

  教师行为:将已有的知识更加明朗化;通过学生讨论与反思,体会椭圆标准方程的常规求法,便于掌握本节的重点,突破难点。

  练 习1:教材P96的练习3 写出是适合下列条件的椭圆的标准方程

  1.(口算) a=4 , b=1 ,焦点在x轴上。

  2. (口算) a=4 , b=√ ̄15,焦点在y轴上。

  3. a+b=10,c=2√ ̄5

  目 的:巩固规律,运用分类与整合的思想。

  变 式:一个椭圆过M , N 两点,求该椭圆的标准方程.

  反复引导得到统一形式

  目 的:明确当焦点位置不明时,不仅可用分类整合的思想还可用统一形式,从而巧用方程组思想.

  ⑶ 明确目的,训练方法

  试题 3 已知B、C是两定点,|BC|=6,且△ABC的周长为16,求定点A的轨迹方程.

  引导学生分析发现A所满足的条件及说明的问题,并体会建立坐标系的目的为的是求椭圆的标准方程。

  教师行为:规范解题步骤,明确用定义法求标准方程的要领,培养学生应用数学语言的能力。

  设计意图:增强学生解题过程的规范化和解题的通性通法.

  ⑷ 巩固练习,强化应用

  练 习 平面内两定点A、B的距离为8,一个动点M到A、B的距离的和等于10.建立适当的坐标系,写出动点M的轨迹方程。

  这样设计练习符合学生的认知规律,由浅入深,以便提高学生的思维层次;分两组练习,然后交流、互评,使所学知识得到巩固和加深。

  ⑸ 归纳小结,巩固新知

  归纳小结是巩固新知不可缺少的环节之一,这个环节对培养学生的归纳概括能力、自我获取知识的能力是十分重要的。本节课我采用让学生谈学习收获的方式对所学进行归纳,重点放在用定义法求椭圆的标准方程上。

  ⑹ 布置作业,提高升华

  根据学生的实际情况,作业的布置分为必做题与选做题。设置必做题的目的是巩固本节课应知应会的内容,面向全体;设置选做题的目的是为了提升能力、发展智力,要求学有余力的学生完成;必做题是教材必做题是教材P96习题2、3;选做题是教材P128例1

《方程》说课稿9

  一、说教材

  ㈠. 教学内容:小学五年级数学上册第四单元解简易方程第五课时:“解方程”(课本第58-61页,例1—例4)

  ㈡. 教材所处地位:本节是学习解方程的方法与应用,它起着承前启后的作用。

  ㈢. 教材的重点和难点:

  教学重点:掌握应用四则运算各部分之间的关系解方程。

  教学难点:让学生掌握检验方程的方法以及相关的表达术语。

  ㈣. 教学目标:。

  1、掌握应用四则运算各部分之间关系解方程的方法,并会检验。

  2、了解教材中应用等式性质解方程的方法,作为必要补充。

  3、培养学生节约能源,保护环境的意识。

  二、说教法

  根据我班学生的实际情况,我准备在教学过程中,采用导---探---练三步教学法激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动 口,重点分析研究方程式的数量关系,让学生根据应用题的题意列出正确的数量关系式。并以多种形式巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效 。

  三、说学法

  通过运用四则运算各部分之间的关系解方程。

  四、说教学程序

  (一)、导入新课

  通过前两节课的学习,我们对方程已经有了初步的了解,那么请同学们回答下面几个问题:

  1、什么是方程?

  2、什么是方程的解?

  3、什么是解方程?

  4、判断下面两个式子是不是方程。

  5+x>6 x+12=16

  想一想x+12=16的解是多少?

  但不是所有的方程的解都是能靠思考得出来的,这节课我们就来学习系统的方程解法。首先我们来复习一下四则运算各部分之间的'关系。

  (二)、讲授新课

  1、创设情境,激发兴趣

  随着气温的骤然下降,冬天的脚步离我们越来越近了,生活在北方,冬季的取暖可是个大问题,这不,经营煤炭的张叔叔又在开始忙着计算了。

  预计今年的煤炭销售量大约是300吨,可是库存仅有180吨,想要满足供应,还要运进多少吨煤炭?

  思考:题中有几个数量,它们之间是什么关系?如果假设还要运进的吨数看成x,怎么用方程还表示这其中的关系?

  180+x=300

  教师演示这个方程的解法,并检验。

  想一想:还有其他的方程列法吗?

  300- x=180

  学生同桌合作完成。

  2、小组合作学习

  ①如果每辆货车能运煤10吨,要想把这120吨煤一次运完,要多少辆车?

  ②一个运煤的车队,去掉派出的10辆车,还剩16辆待用,这个车队一共有多少辆车?

  每个题都有两种表示数量关系的方法,试着列方程解答。

  3、节约能源,思想教育

  随着煤炭、汽油等能源的价格在逐渐攀升,人们把目光都集中在新型能源——太阳能的身上,据统计,一个普通的太阳能用户,相当于每个月节约用电费用20元,那么一年将会节约多少元钱呢?

  4、浏览教材

  我们所用的教材所呈现给我们的解法是依据等式的性质,让我们一起快速地浏览教材,了解另外一种解方程的方法。

  5、巩固练习

  完成58面“做一做”的两个练习题。

  (三)、课堂小结

  方程,对于我们来说,这是一种全新的解决问题的方法,这和我们以前学习的算术解法是截然不同的,所以同学们要勤加练习。

  这节课你有什么收获吗?

  五、教学反思

  1、教材所呈现的方程解法不利于学生整体上掌握所有类型方程的解法,所以在教学过程中,我还是引导学生根据四则运算各部分之间的关系组织教学,而把教材当作了必要的补充。

  2、学生的分析数量关系的能力相对较差,对于我认为非常简单的数量关系居然无法表达清楚,也不能快速地用方程来表示,说实话让我有些措手不及了,他们在课堂上的表现太出乎我的意料了。学生的这种分析问题的能力必须要尽快提高,否则在学习上遇到的困难将会是越来越大。

《方程》说课稿10

  【教材分析】

  今天我说课的内容是五年级上册第四单元《解简易方程》的第一课时——“方程的意义”。在小学阶段,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判别一个式子是不是方程就可以了。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。

  【教学目标】

  根据本节课的教学内容,我拟定了一下教学目标:

  1、理解并掌握方程的意义,弄清方程与等式之间的关系。

  2 、正确地应用方程的意义辨别方程,帮助学生建立初步的分类思想。培养学生认真观察、思考的学习品质及抽象概括能力。

  3 、加强师生的情感交流,使学生在民主和谐的气氛中获取新知。 【教学重点、难点:】

  基于以上教学目标我认为本课的教学重点:建立方程的概念。教学难点:正确区分等式与方程的含义。

  【教学方法】

  为了突出重点,突破难点这节课,我主要采用了直观教学法、演示操作法、观察法等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,

  【教学过程】

  针对“方程的意义”这节课的特点以及结合小学生的年龄特征,本课我设计了板书课题、揭示目标、自学指导、先学、后教、当堂训练六个环节进行教学。

  上课开始,我借助媒体,激发学生的学习兴趣。出示天平,天平是平衡的,再引导学生看屏幕进行演示:在天平的左边放上两个50克的物体,天平不平衡了。在天平的右边放100克的砝码,这时天平又平衡了,说明天平两边所放的物体的重量相等,用式子表示50+50=100,并点明这是一个等式。表示等号两边的数量相等。这样,学生的印象也非常深刻。在学生建立等式概念后,我把天平的左边换掉一个重x克的物体,天平发生了倾斜,说明天平两边所放的物体的重量不相等,引导学生用算式50+x>100来表示,及时说明这是一个不等式,表示左边的重量大于右边。这时在往右盘增加砝码100克,天平又向右倾斜了,引导学生列出不等式:50+x<200。根据两个不等式的关系把一个100克砝码换成50克,天平又出现平衡了,学生观察后得出:50+x=150。同学们在思考交流中明白:这也是一个等式,但它是含有未知数的的等式。为了加深学生的感性认识。我还设计了这个例子:天平的左边放两个相同的`未知重量的物体,右边入100克砝码,可以用式子表示2X=100 。通过天平称重的演示,让学生观察平衡与不平衡的各种生活现象,用生活原型帮助学生理解方程的意义,这样的设计激发了学生的学习兴趣、培养了学生的观察能力和发现能力。

  像这样含有未知数的等式,人们给它起了个名字,你们知道是什么吗?引出方程的概念(像50+X=150 、2X=100等这样的含有未知数的等式,叫做方程。)

  为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过四人合作用自己的方法创作“方程”与“等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。

  接下来是对我们所探究结果的运用,我先设计了对方程概念理解的习题,帮助学生巩固所学的基础知识,强化重点;再通过判断,帮助学生巩固新概念,加深等式与方程关系的理解,强化难点。

  最后,我安排学生对本节课的学习做一个小结,请同学们说一说感受,谈一谈收获等,这样不但把知识进行了巩固,也很好的对整节课进行了评价。

《方程》说课稿11

  一、教材简析和教学目标

  (播放视频)刚才,大家看到学生们正在轻松地玩,你能猜到这是哪部分知识点吗?是的——《认识方程》,我将静态知识进行了动态化处理。

  评委老师,下午好!

  《认识方程》是北师大版小学数学第八册的内容,属于“数与代数”领域,学生已经学习“用字母表示数”,同时又是即将学习“解方程”的基础。

  教学目标如下:

  知识与技能:通过具体情境理解方程的含义,会用方程表示简单生活情境中的等量关系;

  过程与方法:通过观察、比较、分析,经历从生活情境中寻找等量关系到用含有未知数的等式表示等量关系的过程;

  情感与态度:让学生体会到发现、创造的乐趣,经历数学的情感体验。

  二、教学思路

  我的教学思路是让学生在不同的生活情境中经历“数学化”的过程---建立方程模型---然后运用方程表示简单情境中的等量关系。

  本课的教学不拘泥于方程定义的文字描述,而是让学生在生活情境中经历寻找等量关系的过程。

  基于以上思考,我设计了以下三个教学环节:(创设情境.导入课题;自主学习.感知方程;实践运用,拓展延伸。)

  三、教学过程

  首先,创设情境导入课题

  (1)扑克游戏、激疑引趣

  我设计了一个“扑克牌猜数”游戏。拿出13张扑克牌,分别代表数字1—13,让学生从中任抽一张,不让老师看见这张牌。然后跟学生说只要你们用这张牌上的数字按要求计算后把结果告诉我,我就能快速猜到所抽的数字。

  学生应该会兴致勃勃地上来抽一张牌,按要求计算后报出结果,比如得数是75,我猜到数字6,学生可能会觉得不可思议!再次玩游戏,比如这次学生的计算结果是45,我猜到数字3.

  (2)导入课题、提出问题

  在激发学生的疑问和兴趣后,我赶紧介绍帮我忙的就是数学王国中的“方程”,导入课题。(板书:认识方程)

  然后让学生围绕课题提出自己想研究的问题,我顺势确定两个作为本节课将要研究的大问题。“什么是方程?”“为什么要学习方程?”(板书:“什么是方程?”“为什么要学习方程?”),关注学生问题探究意识的培养。

  2.自主学习感知方程

  我设计了四个活动帮助学生在生活情境中经历寻找等量关系的过程。

  (1)想象游戏

  在学生明确“天平平衡,表示天平两边的质量是相等的”之后,我和学生们一起进入想象游戏状态:“伸出你的双手,闭上你的眼睛,现在我们都变成了一架天平。请注意,您的左盘放进了10克砝码,紧接着您的右盘放进了30克物体。此时此刻,左盘来了救兵——20克砝码。亲爱的天平们,oPENYoUREYEs,您现在怎样了?”

  (课件演示上面天平的过程.快速的)“你能用一个式子表示天平两边相等的状况吗?”学生很容易说出“10+20=30”。

  想象游戏中多感官的参与,帮助学生建立“等式”概念。

  (2)不同方式表达

  “同学们,我们继续玩天平!”(课件动态演示:左盘先放一个樱桃,右盘放20g砝码)“要使天平平衡,该怎么办?”学生应该会说“在左盘放上物体吧”。(课件演示)在创设了樱桃生活情境后,我尊重学生的已有学习经验,开放地处理为:请你用自己喜欢的方式表达天平两边相等的状况。学生可能会出现以下几种情形:

  a.生活语言樱桃的重量加5克等于20克

  b.生活+数学语言樱桃+5克=20克

  c.图片+数学语言《认识方程》说课稿+5g=20g

  d.数学语言X+5=20

  “请思考:你觉得他们写的都对吗?这几种表达之间有没有什么联系?你比较喜欢哪一种?为什么?”

  学生们在观察、思考、对比、评价和选择的思维撞击过程中,逐渐清晰这几种表达方式之间有着本质的联系:那就是等量关系完全相同。顺利从物化天平中抽象出数学语言X+5=20,充分感受数学表达方式的优势:简洁明了。(板书:X+5=20)

  (3)自我挑战

  紧接着,我抛出这样一个问题“没有天平了,你怎么找平衡?”我将教材中后面两个例题处理为挑战题。放手让学生经历独立思考、小组学习汇报的探究学习过程。学生可能会知识正迁移地说“我在脑子里想象有一架天平,左盘放4个月饼,等于右盘的340克”。也可能会说“我去找等量关系:两个热水瓶的盛水量+180毫升=20xx毫升”。

  紧扣本课的重点“在生活情境中经历寻找等量关系的过程”,让学生经历由浅入深、由直观到抽象的探究过程。(板书:4y=3402n+180=20xx)

  (4)阐述“方程”

  (老师将黑板上的方程用红粉笔圈起来)“同学们,这些都是方程!请仔细观察它们有什么共同特点?说说你理解的方程是怎样的?”

  此时,学生们已经比较充分积累了活动经验,用自己的语言来描述方程也就水到渠成了。(板书:含有未知数的等式)

  3.实践运用拓展延伸

  这个环节我分层次设计了两个练习。

  (1)看图列方程

  学生运用方程表示简单情境中的`等量关系。

  (2)前后呼应、揭示谜底

  “同学们,现在我们来看看“方程”到底是怎样帮了我的忙呢?”我把扑克牌上的数看作X,根据之前学生的两次计算得数现场编辑两道题目。要求学生根据文字中的等量关系尝试列出方程,然后我告诉学生,我就是通过解方程求出6和3,它们就是你们抽的扑克牌数字。

  “那到底怎样解方程呢?后面我们将继续学习。”

  利用“扑克猜数游戏”资源,前后呼应进行解密的同时,让学生参与共建课堂,将知识点指向“解方程”,也为后面的学习埋下了伏笔,可谓一举多得。

  四、总结陈述

  各位评委,刚才我描述的这个教学过程,我认为是一个“生活问题数学化,数学问题生活化”的过程。主要是让学生经历将现实生活中的等量关系数学化、符号化的活动过程,然后运用方程去解决生活中的实际问题。

  “我并不是否定语言的交流功能,但是实际上,好多事情都是无法靠语言传达的。”这是日本畅销书作家养老孟司在《傻瓜的围墙》一书中强调的一句话。我想,我们的说课也是这样。

  谢谢!

《方程》说课稿12

  一、本质、地位、作用分析:

  《新课程标准》要求:能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。由课标要求我们可以看出:列方程解决实际问题这是贯穿一元一次方程全章教学的主旋律。本节是新课程下的概念课,融入了广阔的生活背景,凸显应用意识,这就要求在教学中选取贴近学生生活实际的丰富实例,调动学生积极思考列出方程,让概念教学充满生活气息,在此基础上通过观察、比较,提炼概括出本质属性,让概念的发现过程是一个探究之旅。

  方程是应用广泛的数学工具,是代数学的核心内容。《一元一次方程》承接小学学习的简易方程和刚刚学习的整式的加减(包括列代数式),又是后续学习其它代数方程的重要基础。本节作为《一元一次方程》全章的起始课,这对于激发学生学习方程的兴趣,获得解决实际问题的基本方法具有十分重要的作用。

  同时方程的悠久历史具有十分深刻的思想教育内涵,早在20xx多年前,我国人民就总结出了关于方程的著作《九章算术》;在公元1248年,元朝数学家李治撰写的《侧圆海镜》是世界上最早的用符号代替文字表示方程的著作。这些充分体现了中华民族的聪明才智,对于激发学生的民族自豪感,从小树立振兴中华的远大理想都有着十分重要的意义。

  二、教学目标分析:

  人教版《一元一次方程》全章将用方程解决实际问题贯穿全章始终。本节内容是《一元一次方程》的起始课,是一节概念课,教材首先通过解决一个行程问题,体会由算术到方程是数学的一大进步,接着通过用方程解决三个实际问题,在此基础上得出一元一次方程的概念,并总结用方程解决实际问题的一般步骤。

  知识与技能:了解一元一次方程的有关概念。体会由算式到方程是数学的一大进步。

  数学思考:经历列方程表示实际问题的相等关系的过程,体会数学化的'思想方法。

  解决问题:通过画示意图、列表格等方法分析实际问题中数量关系,会用方程表示简单实际问题的相等关系。

  情感与态度:结合具体的问题情境,激发学生学习数学的兴趣。结合数学史的知识,激发学生的民族自豪感。

  教学重点:结合问题情境抽象一元一次方程概念

  一元一次方程的学习对于后续学习其它方程有着指导意义,同时也蕴涵着深厚的文化价值。因此将结合问题情境抽象一元一次方程概念作为本节教学的重点。

  教学难点:实际问题的数学化过程

  同时本节是新课程背景下的概念课,一元一次方程的概念与实际问题密切联系在一起,因此将实际问题的数学化过程作为本节教学的难点。

  三、教学问题诊断:

  普通农村中学学生数学合格率不高,有相当一部分学生对数学学科不感兴趣,基本数学知识与技能不达标。从生命的高度关注全体学生,提高全体学生的数学水平,磨练学生永不放弃的意志有着十分重要的意义.所以在教学中应通过多种手段激励全体学生努力向上。

  七年级学生正处于感性认识向理性认识过渡的时期,抽象思维能力有待提高。对于一元一次方程的概念教学要选取具体的问题情境,逐步抽象。

  七年级学生对于方程已经具备了一定的知识基础,但是对于方程的还比较肤浅、模糊,还处于感性层面,缺乏理性的认识和把握。

  对于本节教学的重点——结合问题情境抽象一元一次方程概念。《数学课程标准》明确指出:抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。在概念教学中如何激发学生的学习兴趣?一方面要挖掘概念在生活中的源头活水,选取贴近学生实际的生活问题。另一方面通过教师启发、师生问答明确概念的内涵和外延,让概念的形成过程是一个充满探索的发现之旅,让学生体验到探索成功的喜悦。

  对于本节教学的难点——实际问题的数学化过程。新课标指出:“要关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展。”为了突破实际问题中数量关系的分析这一难点,通过示意图将生活问题抽象为数学问题,通过列表格将数学问题分解为表示数量关系问题,渗透用方程表示实际问题相等关系的数学建模思想,采用“教师引路—自主探路—合作修路—共同走路”的探究线路,为不同层次的学生提供思考锻炼的机会,从而实现不同的人在数学上得到不同的发展。

  四、本节课的教法特点:

  为了激发学生的探究兴趣,培养学生的自主探究能力,有效达成教学目标,我采用如下教法和学法:

  情境教学法:

  情绪心理学研究表明,个体的情感对认知活动有动力、强化、调节等功能。借助多媒体演示创设贴近学生生活的问题情境,引发学生积极健康的情感体验;利用启发式教学引导学生在自主探究、合作交流中发现新知、解决问题,逐步培养能力。

  五、预期效果分析:

  面对当前农村初中数学学生合格率低,学习兴趣不浓等现状,针对教材和学情,在本课中进行了如下探索:

  一、让数学散发魅力

  张奠宙教授曾经提出:数学教学的目标之一是要把数学知识的学术形态转化为教育形态,通过数学知识的教育形态散发出数学的巨大魅力,体现数学的价值,揭示数学的本质,感染学生,激励学生,让数学“冰冷的美丽”唤发学生“火热的思考”。设计贴近学生生活的实际问题;对“天元术”历史背景的挖掘;极具挑战的登山作业;关注生命价值的教师寄语。学生积极思考,兴趣浓厚,强烈感受到原来数学也如此美丽!

  二、让收获激励前行

  在数学课堂上如何照顾不同层次的学生?一节课还要选取重点内容进行分层探究,让不同层次的学生都有收获,从而激发他们学好数学的信心。本节课中在解决行程问题时就采取了“教师引路—自主探路—合作修路—共同走路”探究线路,实现了不同层次的学生都得到了发展。

  三、让数学磨练意志

  学习数学对于学生将来走向社会不单单是要用到知识,其实更为重要的是在学习数学过程中形成的意志品质。学生在面对学习困难时的态度和勇气,克服学习困难的毅力和方法对于学生的将来至关重要。本节课设计的挑战珠峰登山作业目的是培养全体学生永不放弃、努力向上的优秀品质。

  四、让思想指引未来

  教学的终极目标决不仅仅是为了考试,更为重要的是培养思想远大、担负民族复兴重任的建设者。数学课堂上如何实现这一目标?通过具体可感、打动学生内心世界的活动才能实现,本课中用“天元术”解决现实问题,具有人生高度的教师寄语,极具挑战的登山作业都收到了较好的教育效果。

  采取以上措施力图“让数学课堂彰显生命的色彩!”

《方程》说课稿13

  一、说教材分析,学情解析,目标定位

  (一)教材分析:

  《方程的意义》是第二学段北师大版四下第七单元第二节的内容,它是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。

  《方程的意义》对于儿童来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

  (二)教学目标:

  结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:

  1.结合具体情境,了解方程的含义。

  2.会用方程表示简单情境中的等量关系。

  3、经历从生活情景到方程模型的建构过程,进一步感受数学与生活之间的密切联系。

  4、让学生获得一些成功的体验,进一步树立学好数学的信心,产生对数学的兴趣。

  (三)教学重难点

  列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。

  基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型。教学难点是寻找等量关系列方程。

  二、说教学过程

  整堂课以"一切为了学生发展"为出发点,在不任意增加知识点,不任意拔高教学目标,并能更有效地完成教学任务地前提下,我对教学内容进行了大胆的改革。教学活动安排了五个环节:

  1、创设情景,抽象出等量关系

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助天平首先让学生体会等式的含义。

  活动一:感知平衡,体会等式含义

  课件出示一架天平, 在天平一边放上两盒一样重的牛奶(250克)和另一边放上一杯500克开水),请学生仔细观察后说一说你发现了什么?再请学生用一个式子表示天平现在所处的'状态。从学生的熟悉生活情境入手,既让学生从天平"平衡"中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。

  活动二:观察发现,抽象出等量关系

  我创设3个具体情境,让学生观察天平从不平衡到平衡的变化过程,真正体会天平左右两边的质量相等,可以用等式表示。通过天平的动态变化得出若干个不同的等式,从而让学生进一步加深对等式含义的理解。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知多个含有未知数的等式的来源,将"重视结论"的教学转变为"重视过程"的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。

  2.引导分类,抽象出方程的意义

  运用刚才得出的式子进行分类,并让学生说说分类标准,从分类中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,得出方程的特点,从而进一步理解方程的含义。这样的设计我主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

  3.分层练习,巩固新知 在这一环节中,我设计了"找方程"、"猜方程"和"列方程"三个活动。通过活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是数学游戏"猜方程"的出现,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。

  4.小结新知,明确收获

  让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。

  5.拓展延伸

  数学来源于生活,又服务于生活。我设计了用方程表示出把我们俩变得一样重的方法,这样让不同的学生在数学上有着不同的发展。

  (说说本节课的得意之处和遗憾地方)

《方程》说课稿14

  一、教材分析

  对于第7章第7节《最简三角方程》课时安排2课时,我今天所讲是第2节课。

  对于三角方程按照课程标准的要求,我们只研究最简三角方程的求解问题。今天我要解决的是可以转化为最简三角方程的三角方程问题。

  二、教学重点:

  形如Asin(bx+c)+d=0,Acos(bx+c)+d=0的三角方程的解集

  教学难点:可转化为最简三角方程的三角方程的解法

  确定最简三角方程在指定范围内的解

  三、目的分析

  通过研究三角函数y=sinx.y=cosx.y=tgx在一个周期内的图象与直线y=a的交点的横坐标来进一步理解最简三角方程sinx=a.cosx=atgx=a

  (1)当a满足什么条件时方程有解?

  (2)最简三角方程sinx=a.cosx=atgx=a的解集

  (3)利用转化思想求形如Asin(bx+c)+d=0,Acos(bx+c)+d=0的'三角方程的解集

  (4)利用三角方程的一般解求三角方程在指定范围内解的方法

  (5)利用数形结合确定最简三角方程在指定范围内解的个数的方法

  四、过程分析:

  (上节课已经利用单位圆的办法解决最简三角方程sinx=a.cosx=atgx=a的解集)

  (1)复习提问学生回答特殊三角方程:sinx=0.sinx=1.sinx=0.5.sinx=-1.

  cosx=0.cosx=1.cosx=0.5cosx=-1

  tgx=0tgx=1tgx=的解集

  最简三角方程sinx=,()的解集是:{xx=kπ+,kz}

  cosx=,(的解集是:{xx=2kπarccos,kz}

  tgx=的解集是:{xx=kπ+arctg,kz}

  (2)在指数方程与对数方程的学习中,我们已知道把方程问题可以转化为函数问题来解决。同样我们可以把最简三角方程sinx=的解看作三角函数y=sinx的图象与直线y=a的交点的横坐标。

  由学生通过函数做图器来(利用多媒体)演示三角函数的图象与直线y=a的交点,说明三角方程sinx=a,cosx=a的解与a的大小有关。

  理解最简三角方程sinx=cosx=tgx=的解集

  使学生认识到三角函数y=sinx.y=cosx.y=tgx都是周期函数,对于最简三角方程sinx=a.cosx=a.tgx=a.只要求出它在一个周期上的解,就可以求出它的一切解.

  (3)讲解例一:说明可以把(π/6-3x)看成一个整体,就可以直接求出三角方程的一般解。并由学生讨论此三角方程在指定范围内解如何求得?如(0,π),(0,2π)等

  分析:通过一般解------如何-----求解------三角方程在指定范围内解------求k的值

  强调三角方程在指定范围内的解与三角方程解的联系(说明K的特征)。

  (4)讲解例二:说明把形如asinx+bcosx的函数化为同名函数Asin(bx+c)

  这样就把原来的三角方程转化为最简三角方程

  (5)讲解例5:解方程sin2x=sinx

  解法一:利用倍角公式转化为最简三角方程,求解得方程的解集

  继续探讨此方程在(0,2π)内的解,由方程sin2x=sinx的一般解

  代人0

  解法二:若把方程sin2x=sinx看作y=sin2x和y=sinx的交点坐标,

  由数形结合易知此方程在(0,2π)内只有3个解

  引导学生思考此方程在(0,4π),(0,8π)内有几个解?

  (6)举例说明数学知识来源于实际生活

  如物理学中的交流电,电压v与时间之间的关系就是形如y=Asin(bT+c)+d的函数

  当时刻一定,电压就确定。但电压一定时,其对应的时刻就不确定,也就是说不同的时刻对应相同的电压。

  五、总结

  (1)引导学生学会把形如Asin(bx+c)+d=0,Acos(bx+c)+d=0的方程如何转化为最简方程sinx=acosx=a

  (2)让学生掌握通过三角方程的一般解求三角方程在指定范围内解的方法

  (3)在学生认知的基础上,加深理解三角方程的解集表示形式不唯一。解集中度量单位要一致。

  (4)在课堂教学中渗透方程的转化思想,方程与函数的转化思想及数形结合的思想。

《方程》说课稿15

  各位尊敬的评委:

  大家好!今天我说课的内容是:人教版小学数学五年级上册教材53-54页的《方程的意义》。我的说课分为以下几部分:教材分析、教学目标、重难点、教学过程和板书。

  一、教材分析

  方程的意义是学生在已经掌握了用字母表示数,可以用一些简单的式子表示数量间的关系的基础上进行教学的,它将为要学习的利用等式的性质解方程及列方程解应用题打下基础。教材在编排上注重让学生根据具体的情景根据各个天平的状态,写出等式或不等式,在相等与不等的比较中,学生进一步体会等式的含义,同时也初步感知方程,积累了具体的素材。

  二、教学目标

  知识目标:1、理解并掌握方程的意义,体会方程与等式之间的关系。2、会列方程表示生活情境中简单的等量关系。

  能力目标:学生在观察、比较、抽象中,经历将现实问题抽象成等式与方程的过程,积累将现实问题数学化的体验。

  情感目标:感受方程与现实生活的密切联系。

  三、教学重点:

  方程意义的理解以及在具体情境中建立方程的模型。

  教学难点:寻找等量关系列方程。

  四、教学过程:

  (一)谜语导入,了解天平。

  谜语导入,引出天平这个公正的大法官,使得学生对天平感兴趣,从而请学生说说对天枰的了解,接着视频介绍天平的原理。

  (二)创设情景,抽象出等量关系

  情景1:演示天平左边放两个50克的砝码,右边放一个100克的砝码,请学生观察后说一说发现了什么,用一个式子表示天平现在所处的状态。(板书:50+50=100)

  情景2:演示天平左边放上两盒一样重的饮料(250克),右边放上另一瓶饮料(500克),再次请学生用式子表示天平所处的状态。(板书:250+250=500)

  这两个情景学生非常熟悉,既让学生从天平"平衡"中体会到等式的含义,又能较好地激发了学生学习的乐趣。

  然后我还创设2个情境,让学生观察天平从不平衡到平衡的.变化过程,真正体会天平左右两边的质量相等,可以用等式表示。

  情景3:演示出天平左右盘分别放一个空杯子和一个100克的珐码,使学生观察到在天平平衡,即空杯子的重量和珐玛的重量是相等的,空杯子的重量=100克。继续演示,在杯中倒满水,天平倾斜,说明不平衡,得到100+x>100的不等式。(板书:100+x>100)

  再增加珐码,又得到100+x=250的等式。(板书: 100+x=250)

  情景4:天平左边放一个球,右边方一个50克的砝码,根据不平衡状态得到y<50的不等式。(板书:y <50)接着在左边增加一个同样大的球,天平平衡了,得到y+y=50或2y=50的等式。 (板书:y+y=50或2y=50)

  以上的板书都做成贴片形,可随时移动位置,方便下一环节进行分类。

  (三)引导分类,概括方程的意义

  在得出这么多的等式和算式后,学生小组合作,进行分类,并交流分类的标准。学生在分类的过程中逐步概括出方程的定义:含有未知数的等式叫做方程(板书)。在此基础上,再次让学生观察,讨论与交流,得出方程两个要素:一必须含有未知数(未知数不一定用X表示,未知数不一定只有一个)、二必须是等式(也就要有"=")。

  这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。

  (四)层次练习,巩固方程的意义

  在这一环节中,我编排了三个层次的练习。

  (1)"找方程",即教材62页第1题:下面的哪些式子是方程?

  X+3.6=7 3-1.4=1.6 ax2<2.4采用同桌交流的方式进行交流,不是方程的题目要说明理由。

  (2)"写方程", 让学生写出一些方程和举出反例,巩固方程的意义。

  (3)数学游戏:教师出示式子,学生做动作。如果式子是方程,学生就跳一下。如果是等式,学生就蹲下。两样都不是,则不用做动作。

  (4)"列方程",即教材62页第2题:根据天平列出方程。

  (5)根据文字列方程,即教材62页第3题。例如:小明x岁,爸爸40岁,爸爸和小明相差28岁。通过层层递进的练习,加深理解消化所学的知识,并应用所学知识灵活解决实际问题。

  (五)总结提升 ,评价自我

  组织学生说说收获,可以让学生再次体会成功的喜悦。说说存在的不足,同时又再一次的反思了自我。

  (六)作业布置, 回归生活

  生活中还有许许多多的实际问题可用方程表示其数量关系,请同学们列举出来。

  布置这题作业,目的是让学生自主设计练习使学生充分感受数学与自然和人类社会的密切联系,增强数学的应用意识。

  (七)板书

  方程的意义

  50+50=100 100+x=250

  250+250=500 2y=50 方

  等式 a+2=17 程

  x+y=50

  含有未知数的等式叫做方程。

  反思:通过文字形式来设计说课稿,比较单一,不能吸引评委。那么在设计里面放入辅助性说明的图片,比长窜的文字更清晰,更能让人明白。

【《方程》说课稿】相关文章:

《方程》说课稿01-02

方程的意义说课稿07-15

《方程的意义》说课稿09-24

解方程说课稿范文08-12

解简易方程说课稿01-14

《方程》说课稿(通用20篇)05-25

椭圆的标准方程的求法说课稿01-15

[荐]《圆的标准方程》说课稿05-16

《直线的点斜式方程》说课稿06-02