您的位置:群走网>教学资源>说课稿>分式说课稿
分式说课稿
更新时间:2023-11-14 08:29:12
  • 相关推荐
分式说课稿

  作为一位杰出的老师,可能需要进行说课稿编写工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么大家知道正规的说课稿是怎么写的吗?以下是小编为大家整理的分式说课稿,欢迎大家分享。

分式说课稿1

  今天我说课的内容是八年级数学下册《分式方程》的第二课时,我将从以下几方面进行介绍。

  一、教材的地位和作用:

  本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。

  二、目标

  1、使学生理解分式方程的意义。

  2、使学生掌握可化为一元一次方程的分式方程的一般解法。

  3、了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法。

  4、在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧。

  5、通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。

  三、重、难点分析

  本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。

  四、方法:

  本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重“精讲多练”,真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。

  五、教学过程

  (一)复习:

  (1) 什么叫分式方程?

  设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。

  (二)新授:

  (1)学生学习例题交流讨论,找两组同学到黑板上尝试解题。

  设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法有一个初步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的.问题要做出适当的,给同学以鼓励和引导。

  (2)讲解例题:7/x-2=5/x

  解:方程两边同乘x(x-2),约去分母,得

  5(x-2)=7x解这个整式方程,得

  x=5、

  检验:把x=-5代入最简公分母

  x(x-2)=35≠0,∴x=-5是原方程的解。

  设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。

  (3)议一议

  在解方程1-x/x-2 = -1/x-2 - 2时,小亮的解法如下:

  方程两边都乘以X -2,得

  1 - X = -1 -2(X -2)

  解这个方程,得

  X = 2

  你认为X = 2是原方程的根吗?与同伴交流。

  教师小结:

  在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根

  验根的方法有:代入原方程检验法和代入最简公分母检验法。

  (1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。

  (2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根。

  前一种方法虽然计算量大,但能检查解方程的过程中有无计算错误,后一种方法,虽然计算简单,但不能检查解方程的过程中有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。

  想一想:解分式方程一般需要经过哪几个步骤?由学生回答。

  (4)教师归纳小结:

  解分式方程的步骤:

  1 、在方程的两边都乘以最简公分母,约去分母,化为整式方程

  2、解这个整式方程

  3、把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

  (5)轻松完成:课堂练习:29页1练习

  (6)归纳总结、整理反思

  学生自己总结本节课的收获。教师引导学生不但总结知识上的收获,也要总结合作交流上,反思整堂课的学习体验。

  设计目的:引导学生从多角度对本节课归纳总结,感悟知识上的点滴收获,体验合作交流的快乐,反思自己。

  (7)课后作业:32页习题16、3的1大题的8个小题

  教学设计说明:整个教学活动,从学生的实际出发,引导学生通过探索、交流等手段,获得知识,形成技能,发展思维。在教学活动中,我积极地充当教学活动的组织者、引导者、合作者。让学生产生一种渴望学习的冲动,自愿地全身心地投入学习过程,自主学习、自悟学习、自得学习,让学生在言词实践活动中真正“动”起来。变“听”数学为“做”数学。使学生的个性在课堂中得到张扬、能力得到发展。最终实现以下理念追求:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

分式说课稿2

  我们知道,分式是表示数量关系的工具,是刻画现实世界解决实际问题的一种模型。本节课的内容是分式的起始课。下面我将从教学背景、教法学法、教学过程、设计说明四个方面来具体阐述我对这节课的理解和设计。

  一、教学背景

  1、教学内容分析

  (1)地位与作用:《分式》是北师大版新教材八年级下册第三章第一节,本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、意义和用分式表示数量关系。分式是继整式之后,又一代数学习的基本内容,是小学所学分数的延伸和扩展,学好本节课,是今后继续学习分式的性质、运算以及解分式方程的前提。

  (2)重点:分式的定义

  (3)难点:识别分式有无意义;用分式描述数量关系

  分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式表示数量关系是教学的难点。

  2、教学目标

  (1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系,进一步发展符号感。

  (2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。

  (3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。

  经过七年级一年的学习,学生初步养成了自主探究意识。一方面,在七年级下册中,学生已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以上3个方面为本节课的教学目标。

  二、教法与学法

  基于以上教材特点和学生情况的分析,我在本节课主要采用“引导—发现教学法”,于计,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

  三、教学过程

  《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。

  (一)创设情景导入新课

  问题情景1、在这儿我对教材进行了处理,课本引例是“土地沙化、固沙造林”问题,设问是“这一问题中有哪些等量关系?”我将引课方式改为通过学生自己构造代数式去发现分式,:

  问题情景2、轮船在水上航行,静水速为每小时20千米,顺水航行100千米与逆水航行60千米所有时间相等。试表示顺水与逆水所用时间。

  利用学生举实例列出相应的代数式。

  这样从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。

  “好的教师不是在教数学而是激发学生自己去学数学”。通过学生对自己所构造的代数式进行观察,创设发现情境,学会把自己的活动作为思考的对象,更好地进行分式概念的建构活动。

  (二)合作交流,解读探究

  1、分式的概念

  (1)议一议:你们所发现的这一类新代数式它们有什么共同特征?它们与整式有什么不同?

  (2)类比分数,概括分式的概念及表达形式

  两个数,相除可以用“ ”或“ ”来表示,如果两个代数式A,B相除我们也可以用“A÷B”或“"来表示。

  分式的.概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。

  这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。

  (3)小组内互举例子,判定是否分式

  根据分式的概念,我们还可以看到分数线具有双重意义:

  (1)表示括号;

  (2)表示除号。所以为了让学生体会到这一点

  2、在掌握了分式的概念以后,教师通过”要分数有意义,只要使分母不为零“让学生很自然得过渡到”要分式有意义,也只要使分母不为零"即可的思想。

  教师抓住这一契机,给出练习:

  3、学生根据之前的结论解决问题,教师顺水推舟,再给出以下分式,让学生讨论,这时当x取什么值时,分式值为零,给出练习2。

  通过三步的学习巩固学生对概念的强化理解。

  (三)应用迁移巩固提高

  根据学生基础差的特点,又设计了三个题组训练,让学生在巩固的基础上加以提高。

  (四)总结反思,拓展升华

  一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?

  教师整理学生的,归纳小结:

  (1)整式和分式统称为有理式

  (2)分式的概念:两个整式A,B相除时,可以表示为 的形式,如果分母B中含有字母,那么叫做分式。

  (3)要分式有意义,也只要使分母不为零

  (4)当分母为零时,分式就无意义

  (5)分式的值为零必须满足两个条件:

  (1)分子的值为零;

  (2)同时分母的值不等于零。

  通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。同时,体现在学习策略的选择、实施、调整等方面,从整体上也提高了学生的认知水平。学生通过反思,不仅可以梳理在学习过程中对概念的理解程度,还可以自己在认知加工过程中所闪烁出的思维火花,领悟其中的数学思想和方法,对提高数学思维能力起到了积极的作用。

【分式说课稿】相关文章:

分式说课稿范文04-21

分式的基本性质的说课稿12-26

《分式的乘除》教学反思03-14

说课稿范文说课稿 范文10-04

《猫》说课稿(精选)07-04

《史记》 说课稿09-11

麋鹿说课稿09-12

说课稿范文【经典】08-09

画风说课稿08-10