- 相关推荐
作为一位优秀的老师,教学是重要的任务之一,对学到的教学技巧,我们可以记录在教学反思中,快来参考教学反思是怎么写的吧!以下是小编帮大家整理的《运算定律》教学反思,欢迎阅读,希望大家能够喜欢。
《运算定律》教学反思1
加法运算定律是四年级下册第三单元内容,是在加法及验算、四则混合运算的基础上进行教学的。本节课的新知识在以前的`数学学习中都有相应的认知基础,学了本节的新知识又可以促进学生更深入认识原来学过的知识和方法。在之前的教学中,运算定律都是让学生通过观察、比较和分析,然后让学生根据对运算定律的初步感知举出更多的'例子,进一步分析、比较,发现规律,并叙述所发现的规律。我认为这样做学生固然能够掌握运算规律,但并没有从本质上真正理解规律。因此,我在教学时,重点让学生从加法的意义上去理解并掌握规律,主要做到以下三个方面:
一、唤起学生的认知经验,初步感知规律。
教学中,结合情境引导学生列式解答问题,并抓住两个不同加法算式的计算结果相等,且都能解决问题为切入口,引导学生得到等式。
二、组织举出相关例子,充分展开讨论,初步提炼规律。
请学生以上一等式为参照,再举一些有着同样现象的例子,讨论交流具有此类特征的算式的特点。在此基础上,引导学生用数学语言表达这种规律,初步提炼规律。
三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。
教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和一年级学的凑十法以及加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律加法结合律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。
本节课的教学,应该说学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。在教学的过程中仍存在着诸多的不足之处:学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题。
课堂语言不够精炼,重复啰嗦;关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,在学完两种运算定律后,应给学生足够的时间练习巩固,在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,加深学生的理性认识,促进学生思维灵活性的发展。
《运算定律》教学反思2
四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:
一、学会寻找题目的特点。
(1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。
例如:25、36,把36写成4×9。变成25×4×9,使计算简便。
(2)把接近整数的写成整数和一个一位数相加减。
例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。
(3)寻找能凑成整数的.数,把它们相加减。
例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。
例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。
二、巧妙运用简便计算。
简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。
例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4
三、注重题目的对比。
有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。
例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律
例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把102拆成100+2。
总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。
《运算定律》教学反思3
加法运算定律是人教版四年级教学上册第三单元第一课时的内容,本节课的教学目标是探索并掌握加法交换律和加法结合律,能初步运用加法交换律和加法结合律进行简便运算。本节课的重点是掌握加法交换律和加法结合律并能初步运用,难点是运用加法交换律和加法结合律进行简便运算。
本节课,我利用三代导学案进行教学,让学生依据自学导读单在前一天晚上自学本节课的内容,对加法交换律和加法结合律的探索过程、表达方法都有了一个初步的了解。课堂上我们就直接同桌交流自学导读单内容,老师只巡视,不讲评。在交流完自学导读单之后,我们就开始完成分层训练的第一题,这道题是根据已知的等式,写出运用了什么运算定律,通过这道题让学生回顾并展示加法交换律和加法结合律的内容及字母表示的方法,这是本节课的核心知识点,所以我在黑板上进行了板书。其实分层训练第一题的处理,承载着教学新知的任务,只不过这个新知学生已经提前预习了,课堂上只是一个学生的展示和老师的点拨。分层训练的第二题,是根据运算定律进行填空,对运算定律起到进一步巩固的作用。分层训练的'第三题是运用加法运算定律进行简便计算,考虑到学生初次接触到这种题,所以就安排学生先做第一题,并让两个学生演板,一个学生按从左往右的顺序计算,并不简便,另一个学生是用加法结合律先把后两个数相加,因为后两个数正好能凑成整百的数。这样,通过两种方法的对比让学生切实感受到哪一种方法简便,并且知道了简便的方法就是利用加法运算定律把能凑成整十、整百的数放在一起相加。接着,让学生完成后两道题,这时,应该有一部分学生能够比较顺利的用简便方法进行计算,还有相当一部分学生有困难,我看主要原因是学生不能发现哪两个数能凑成整十整百的数。通过今天的作业来看,今天的内容学生掌握的并不好,还需要在接下来的学习中加强练习,不断提高运算的能力。
本节课还有很多不足之处,比如:学生交流的习惯还没有养成,还不能做到完成后就自觉交流。全班的交流也应该有选择的进行,而不是每道题都交流,这样就可以节省出更多的时间对重难点的内容加以练习和点拨。本节课的难点是运用加法运算定律进行简便计算,突破这个难点的方法是找出算式中哪两个数能凑成整十、整百的数,课堂上应该把这个方法告诉学生,比如看两个数个位上的数能否凑成整十数。还有学生的做题格式,还需老师的示范。
总之,本节课看似流程齐全,学生活动积极,但是细节处理还不够得当,还需在以后的教学中不断改进。
《运算定律》教学反思4
《整数加法运算定律推广到小数》的内容是小学六年制数学第八册课本116页例5以及相应的习题,学习的是整数加法运算定律推广到小数。
教学目标分为三类:
(1)知识目标:知道整数加法的交换律,结合律对于小数加法同样适用的,能运用加法的交换律、结合律进行小数加减法的简算。
(2)能力目标:培养学生的计算能力,提高计算的技巧,发展学生的推理能力。
(3)德育目标:培养学生做事认真,讲求方法,注重实效。
在教学本课时,我根据学生的年龄特点和迁移的认知规律,运用简单的多媒体,创设贴近儿童生活的问题情境,为学生提供丰富的表象。
采用的教学方法主要是:
1、竞赛。考虑到下午学生的情绪可能较低落,加上本课属于计算课,本身让人觉得枯燥无味、学生缺乏兴趣。为此本人临时改变教学计划,把口算题改为小组竞赛,希望以此为切入点,调动学生学习积极性,同时培养学生合作、竞争意识。
2、自主探究学习的方法。教学时,我创设了圆圆买文具的生活情景,让学生帮助她解决问题,使学生感受到被信任、能做事情的快乐,不仅实现了角色转换,唤起学生的主角意识,而且让学生享受到助人的乐趣。计算时让学生自行探究,从比较中得到简便算法,这样使学生体会到数学来源于生活,又应用于生活。
在教学时,根据教学目标,本人设计如下的教学过程:
1、口算比赛。
目的.:检查学生的计算情况,同时从中引出定律,为新课作铺垫。口算也叫心算,它是不借助计算工具依靠大脑思维记忆直接算出结果的一种计算方式。学生进行口算需要观察数目的特征,然后在心里以灵活简便的方式,迅速、准确的计算出来,这样心口合一,又快又准,日积月累计算的能力就不断的提高了。从而培养了学生对数学的兴趣,调动了学生学习数学的积极性、自觉性和主动性。课前两三分钟的口算,我几乎每课必用,不知在座认同吗?
2、创设情景,尝试自学。
具体做法是:让学生先尝试探索,教师引导。心理学家布鲁纳指出:探索是数学教学的生命线。培养学生的探索能力,应贯串数学教学的全过程。新课标也明确指出:自主探索与合作交流是学生学习数学的重要方式。本课创设买文具的情景,把教学内容放到一个学生非常熟悉的情景中,学生通过尝试计算,自觉地将整数加法运算定律迁移到小数加法运算当中,从比较中得出简算方法。这样学生体会到数学来源于生活,又应用于生活。
3、课堂练习。
教师根据学生的实际生活背景,出示三组学具,分别有三件、四件、五件,让学生计算它们的总价。学生可以根据自己的实际水平,自主选择题目,进行相关的练习,达到满足不同层次学生的需要,教师从中了解学生的掌握情况。
4.概括简算的步骤。
当学生学完新知,让学生根据出简算的步骤,可以培养学生运用结构的学习方法,同时养成良好的学习习惯。
5、拓展练习。
包括两个小题。
(1)、判断能不能简算。主要强化学生学习习惯的养成,培养学生计算时能根据题目灵活应变,防止学生陷入思维定势,误以为学了简算,就什么题目都要用简算。
(2)、开放题。为学生提供了思维的方法,有利于让各类学生都得到发展。
《新课标》指出:必须让每个学生学到有用的数学,数学的内容必须来自于学生的实际背景,让学生从生活中提炼出数学模型。
本课的教学从胆抛弃教材那枯燥无味的数字,而从学生熟悉的生活情景中提炼出数学知识,真正做到让学生学有用的数学。教学时,教师利用旧知进行迁移,教师教得轻松,学生学得愉快。但开放题时,对于5.38-1.66-时,括号里的数有的学生填1.66时,教师要注意引导学生为何填1.66不能达到简便计算,引导时可以留点时间让学生先进行试算一下,学生便可以较清楚地发现:1.66与1.66不能凑成整数,从而解决这个难点。
《运算定律》教学反思5
本节课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。
简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的'不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。
上了这节练习课后,学生不仅能解决问题,而且简便计算的方法也掌握得比较好,所以我认为“简便计算”的教学必须遵循“以生活实际为出发点,展示知识的发生过程,让学生知其所以然。”
《运算定律》教学反思6
学完加法交换律后,我感觉内容比较简单,学生也容易理解。做了几个简单练习后,我准备结束这个内容。按照惯例,我问了一句:学了这个定律,你还有什么问题吗?这时马上有学生提出:加法中有交换律,那么减法、乘法、除法中有没有这个定律呢?
我一阵欣喜,学生已经学会了接受新知识时把知识延伸开来。虽然打乱了我这节课的教学计划,我马上引导学生一起来总结刚才是如何学习得到加法交换律的方法,在此基础上提出能不能根据刚才举例—观察—归纳—验证的方法来想一想解决这个问题呢?学生们马上进行小组合作探讨验证。在经过短暂的讨论交流后,同学们一致认为乘法也有交换律,并能举例应用。但说到减法和除法时,有了分歧,开始争论起来。
生1:我认为减法中没有交换律,例如8-5=3,交换被减数和减数的'位置5-8就不能减了。
生2:可以减得-3(学生已经从课外学到了负数的知识)
生3:差不一样,所以没有交换律。
这时又有一个同学反驳到8-8=0交换位置后还是8-8=0,我认为减法中有交换律。这时很多同学露出了困惑的神情,到底谁的对呢?短暂的沉默后,马上又有一个同学站起来说:减法中必须被减数和减数相同时,才能出现交换位置差相等的情况,这是很特殊的情况。但加法交换律和乘法交换律是任何数都可以的,所以减法和除法都没有交换律。我带头为这位同学的发言而鼓掌,更为他们的勇气和智慧而高兴。学生们在争论中解决了问题,从中体验到了学习过程中的成功与失败,更加深了知识的理解,培养了学习的能力。
《运算定律》教学反思7
《整数加法运算定律推广到小数》的内容是人教版小学四年级下册教材104页的例4以及相应的习题,学习的是整数加法运算定律推广到小数。
教学目标分为三类:
(1)知识目标:经历探索有限个例证使学生理解整数的运算定律在小数运算中同样适用的过程,并根据数据特点正确应用加法的运算定律进行简便运算。
(2)能力目标:在具体情境中,灵活应用加法运算定律解决实际问题,体会解决实际问题策略的多样性,进一步发展数学思考,提高解决问题的能力。
(3) 德育目标:在具体情境中,灵活应用加法运算定律解决实际问题,体会解决实际问题策略的多样性,进一步发展数学思考,提高解决问题的能力。教学重点: 使学生理解整数的运算定律在小数运算中同样适用。
教学难点: 让学生自主探索,发现小数加减法是否可以简算,以及应用它解决相关的问题。
在教学本课时,我根据学生的年龄特点和迁移的认知规律,运用转化的数学思想和简单的多媒体,创设贴近儿童生活的问题情境,为学生提供丰富的表象。采用的教学方法主要是:我采用了自主探究学习的方法。
1、教学时,我创设了春季运动会的情景,通过有激励性的四项技能竞赛情境导入,充分激发学生学习新知的欲望,使学生自觉地进行小数加减简便算法的探索活动,融入新知识的学习中。
2、我结合学生原来的生活经验,大胆放手,给学生思考的空间,让学生成为数学学习的主人。在学生独立自行计算,发展学生的个性的基础上,再让学生从求选手总成绩不同的算法中比较、悟出整数加法定律在小数计算中同样适用。通过情境中特设计的两道都能用定律进行简便计算和一道不能简便计算的'数据,使学生在有限个例证中证实了初步构建的数学模型,懂得能否凑成整数是判断小数加减算式能不能进行简便计算的依据。
3、练习设计层次性。课堂练习是学生学习内容的重复反应或拓展,课堂练习能及时反馈不同层次学生掌握知识的情况。本课让学生通过基础知识的巩固练习、新知的应用、开放题思维训练使三个层次的学生都有所获、有所悟,并体验到成功的快乐,增强了学生学习信心。
4、在教学中还存在着许多不足与缺陷:如本课教学内容有数字的特殊性,如何根据学生生活创设趣味性、有效性、真实性的最佳的教学情境;计算课应怎样驾驭课堂既体现自主学习,又不枯燥乏味;在独立探索中有困难的学生应怎样及时引导和帮助,才能取得良好的教学效果。抛砖引玉,提升自我教学能力,是我本节课的目的。教海无涯,又因本人水平有限,本课堂教学难免存在着许多不足与问题,敬请各位领导、老师指点迷津,多多指正。
《运算定律》教学反思8
一、调整教材顺序,促进有效教学
“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的`障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“L型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
《运算定律》教学反思9
《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我做了以下的努力:1.在解决问题的过程中探寻规律。 英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。” 在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。 接着,让学生用同样的方法探究加法结合律。 整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的`组织能力。2、加法结合律的教学的看法 在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。所以我们还在探索、反思是否有更好的题材与方法来教学加法结合律。 对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。
《运算定律》教学反思10
一、着力引导学生自主探寻、整理数学知识
首先出示六道不同运算顺序的计算题,让学生口答正确的运算顺序,即每步先算什么,再算什么。让学生充分回忆运算顺序的相关知识,体会运算顺序的不同。在学生充分回忆运算顺序的基础上,组织学生自主分类,在小组中充分交流,从而整理出三类不同类型计算题的的运算顺序,达到整理复习的目的。接下来我在学生归类的`基础上进行运算顺序的提炼,“同级运算,从左到右”;“两级运算,先算高级”;“含有括号的运算,括号优先”,来强化学生的认知。
然后在复习、强化运算顺序的基础上,再出示几种与刚才六道不相同的计算题,检测学生运算顺序使用的正确与否。
接着以最后一题为切入点,引出运算律这一概念,自然过渡到下一环节——运算律与运算性质的复习中来。让学生在小组中回忆并整理学过的各种运算律,并举例说明,注重概念定律与实际的结合。
最后趁热打铁,加以引导:“其实减法和除法也有一些运算顺序,能让计算变得简便,回忆一下,相互交流一下。”进一步丰富学生运算规律的知识,促进学生对运算规律的认识。
二、注意练习的层次性和形式的多样性
在充分复习运算顺序和运算律的基础上,我还开展了三组有效的练习:
第一组:填空。
第二组:判断。选取学生常出现的错误,让学生进行判断改错,进一步强化学生对相关运算律及运算性质的认知。
第三组:简便计算。这里进行强调:在计算中要仔细观察,有些不使用运算律和运算性质也可以简便计算; 有些题目无法一眼看出能否简便,但在计算过程中可以简便计算,更深一层的挖掘运算律及运算性质,体会实际运用中有时可以用平时积累的经验来简便计算,有时在计算过程中使用简便计算,强调灵活运用的重要性。
存在的问题:
1、由于间隔时间较长,大部分学生已经把运算律的内容忘记,导致不能灵活运用,从而达到简便运算的目的;
2、部分学生甚至不能掌握运算顺序,即:先算乘除,再算加减,有括号的先算括号里边的;
3、在计算过程中,仍然存在以前的问题,如:小数与分数的加减,整数、小数、分数的乘除运算。
这些问题的存在,使我认识到:只有使他们真正理解四则混合运算的顺序和运算律,在计算过程中做到胆大心细,而要做到这些,任重而道远,必须找到一些典型例题,加强这方面的练习强度。相信在师生的共同努力下,一定能在四则混合运算中游刃有余。
《运算定律》教学反思11
本节课,我通过观察、比较和分析、推理等途径引导学生找到实际问题不同解法之间的异同系,自主发现并验证、归纳这两个运算律,初步感受运算规律作用,有意识地让学生应用已有经验,经历运算律的发现过程。
一、在导入新课这一环节,我让学生回顾学过的运算,得出课题,让学生由课题思考本节课所学的知识,这样设计使教学活动的探究性更浓一些,同时也为接下来的'学习留下了创新的空间 。
二、新授环节,我通过创设学生熟悉的生活情境,引导学生获取信息,让学生结合相关信息,提出用加法计算的问题。学生都能准确提出问题,这为接下来探索规律奠定了基础。在这个环节,我进行了创新处理,让学生开放思维,尽情提出问题,并将本节课探究活动必要的三个问题同步呈现出来,同步引导学生用不同的方法列式解答,同步通过口算揭示等式,为下面的探究运算律做好有效的铺垫,促进后面探究活动更加紧凑流畅。在首次探索运算律,学生还不懂得运用科学的探究方法,我在此环节探索加法交换律的设计中,加强了教师的引导作用,启发学生按照“猜想——验证——总结”的模式深入探究规律,为今后探索数学规律,起到方法上的导向作用
三、在自主探索加法结合律这一环节,我在初步引导学生观察等式特点之后,放手让学生在合作组中自主探索第二个规律,真正做到让学生成为学习的主人,自主探索规律,学以致用。
四、最后,我让学生说一说上完这节课的心里感受。学生对哦能用自己的语言表达这两个定律,也会运用,效果还可以。
《运算定律》教学反思12
本节课的新知识在以前的数学学习中都有相应的认知基础,只是没有形成知识体系,教师在充分备学生和教材的基础上为大家奉献了一节实效又实用的课堂。教师能根据旧知与新知的结合点深入认识原来学过的知识和方法。数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下面的探究呈现素材。
教学中,两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律然后让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样一方面有利于符号感的培养,方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的`基础。在充分感知个性创造的基础上,使学生体会到符号的简洁性,从而发展了学生的符号感。构建了简单的数学模型
本节课的教学,学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,但并未将两者放在一起对比,抽象出异同。在学完两种运算定律后,应给学生一定的时间比较两种运算定律的区别,加深学生的理性认识,促进学生思维灵活性的发展。
另外,为了培养学生的思维的创造性,教师在总结时不能简单说说收获,可以提一个思维拓展的问题。如:学了加法交换律和加法结合律你还会想到什么呢?学生猜测后思绪会飞扬起来,甚至会问老师,亲自动手实践。只有激发学生积极思考,才能使学生的思维由“表层”走向“深入”,促进学生的思维发展。
《运算定律》教学反思13
计算能力是学生在小学阶段必须掌握的一项很重要的基本技能,也是学生后续学习的基础。计算教学不仅要使小学生能够正确的进行四则运算,还要求小学生能够根据数据的特点,恰当地运用运算定律和运算性质,选择合理的灵活的计算方法和计算过程使计算简便。在这样的计算过程中,既要培养小学生的观察能力,注意力和记忆力,也要注意发展小学生思维的灵敏性和灵活性。同时计算也有利于培养小学生的学习专心,严格细致的学习态度,善于独立思考的学习能力,计算仔细,书写工整和自觉检查的学习习惯。计算教学直接关系着小学生对数学基础知识与基本技能的掌握,关系着小学生观察,记忆,注意,思维等能力的发展,关系着小学生的学习习惯,情感,意志等非智力因素的培养。因此,小学阶段的计算教学就显得异常重要。然而,在平时的教学中老师们往往就感到很困惑,觉得非常简单的知识小学生学起来却感到很困难,总是没能达到老师自己想要的效果。
出现这种原因我觉得主要存在以下几个问题:
(一)小学生对所学运算定律概念模糊不清
小学生的计算离不开数学概念,运算定律、运算性质、运算法则和计算公式等内容,而掌握概念是学好数学的基础。
1、乘法分配律与结合律易混淆
为了计算简便,解题中要训练学生合理运用运算定律,灵活解题。而在运算定律中,乘法分配律与乘法结合律非常相似,所以导致学生很容易混淆。如:25×7×4时,小学生总是把它当成分配律来计算,变成25×7+25×4或者25×7×25×4,不能理解概念。结合律的概念是,先把前两个数相乘,或者先把后两个数相乘,积不变。对概念理解不到位,导致在做题目时,老是出现错误。尤其乘法分配律是一个特别难理解的一个定律,比较抽象,而对于四年级的小学生来说,他们正处于具体形象思维向抽象逻辑思维的一个过渡时期,因此他们对概念的理解有点困难,总是会忘了后一个数也要和那个数相乘。如:(125+8)×4,他们总是会变成125×4+8。并且特别容易把它与乘法结合律混淆,所以导致教学比较的'难。
2、运算中添括号与去括号时,运算符号的改变与不改变分辨不清
如讲括号的作用时,难点是添括号、去括号时括号里边运算符号的变化规律。如:15-4-2=15-(4+2)与20÷4÷5=20÷(4+5),但是很多学生觉得因15+4+2=15+(4+2),所以应该15-4-2=15-(4+2),因为20×4×5=20×(4×5),所以应该20÷4÷5=20÷(4÷5)。这就需要让小学生在充分的计算实践的基础上,自己归纳应该怎样变化,并且知道为什么?因为定律是建立在法则的基础上的。加不加括号,用不用运算定律,最后的计算结果是一样的。这条原则是不变的。只有小学生在熟练应用运算定律、括号后,积累了大量计算经验(如:4×25=100)的基础上再教简算才会显的自然、简单。简算是有效利用运算定律,括号使计算变的简单的一种计算技能,有时可直接口算,而不会改变计算结果,运用简算可提高计算速度。简算不单是在做简算题时才用,是可以随时使用的,这一点也应让小学生清楚。
3、运用乘法分配律逆运算易出错
为了计算简便,要灵活运用定律,而乘法分配律的逆运算却是一个难点,小学生难以理解。如计算3.4×0.125+4×0.125,本来小学生一眼就能看出运用乘法分配律可以得出,可是小学生很容易出现错误,(3.4+4.6)×0.125×0.125或者是直接计算,不会灵活运用乘法分配律的逆运算。但是有些学生学得比较快,所以在教学时,教师可以出一些不同等级的题目,可进一步深化,挖掘学生的潜能,可以让学得快的同学拓展思维依次出示:1.25×0.34+4.6+0.125和3.4÷8+4.6×0.125这样,就不会让学得快的学生觉得无聊。还有在教学中要尽量减少学生计算的错误,提高计算的正确率,应根据学生的实际情况,因材施教,因人施教,采取相应的对策,才能提高学生计算的能力。
(二)前后知识的相互干扰对小学生的影响
小学生都认为:我知道按顺序做是比较方便的,但这样就没有运用运算定律,就不是简便计算!也有的小学生:“我根本没仔细看过题目,因为是简便计算嘛,所以拿上来就运用运算定律。”这种错误是由于小学生不正确的简便意识所造成的,他们认为:简便计算一定要运用运算定律,否则就不是简便计算!
由于不看题,本来直接算括号时,算式会更加的简便,但是有些小学生却认为要用运算定律,式子才会简便。因此利用乘法的分配率,虽然最终答案是正确的,但是导致算式多走了弯路,反而不简便了。
(三)题目本身的数字特征对小学生的干扰
我们在学习简便计算的一个很明显的标志就是“凑整思想”。“凑整”就是利用运算定律凑成整十整百,从而达到使计算简便的效果。但“凑整”必须建立在正确并熟练运用运算定律的基础上,不能盲目地追求“凑整”,一看到可以合成起来凑成整十整百的,就不顾算式的特性,强制性的“凑整”,变成了为“凑整”而“凑整”,造成知识学习的机械性。有些题,由于受数字的干扰,小学生容易出现违背运算法则的思想错误,盲目追求“凑整”。
(四)小学生灵活运用运算定律的能力欠缺
在教学的过程中,运算定律教学这一部分,教材在编排上安排的课时较短,内容既少又简单,题也典型,教材只是告诉你教什么内容,并提供范例,发挥都在于教师,所以教师在教学时,要一步一步的来,一条一条的说明。所以,在上课时,检查教学效果发现小学生都掌握的不错,都会运用,可是一到他们自己课外去做时,就不会运用了,因为在前面他们学习了四则运算,从而形成了思维定势,一下子比较难改变过来,还停留在前面的学习当中,在上课时,由于老师一直在强调所以才会运用,而到了课后没有人跟他们说,就不知道怎么使用了。如:56×37+56×63,他们只会按照以前所学的从左到右的计算顺序去计算,不知道使用简便计算,灵活的运用到课堂中来。小学生很难转变所学的知识,所以导致在教学时比较困难。
《运算定律》教学反思14
对于加法的交换律学生很容易理解,但是在三个或三个以上加数相加时,他们分辨不清是该交换律还是结合律了。通过本节运用课,我发现孩子们对结合律掌握得不太好。尤其是在交换律和结合律同时使用时,他们有简便的意识,却对定律的辨析不够清晰,缺少明晰的步骤。
如:在解决115+132+118+85这一题时,学生们都知道将115+85相加、另外两个加数相加,但是他们缺少这一交换和结合的.步骤,而是直接在第一步就写道200+250,还有部分同学直接在横式上加括号。这一现象表明:学生们对于简便的计算方法、加法的运算定律只是初步理解了,有简便的意识,但练习还缺少规范性。
面对学生的错误,我又觉得有些矛盾:我们的教学应该是为了让学生会用,而不是将重心盯在让学生辨别是交换律,还是结合律之上,我们都知道:会用才是目的。但是没有规范的要求,他们仅将简便的过程藏在心里,无疑显露出他们对简便运算与定律掌握不太牢固,运用时缺少足够的信心,还未能理清晰计算过程,表现力尚为缺乏。所以学生们尚需走稳每一步,看似简单的内容也得扎实的理解、熟练地运用。
《运算定律》教学反思15
1、挖掘教材,让学生真正参与到学习当中。
在导入部份用一组整数乘法算式让学生进行简便算法,然后,在整数数字中点上小数点,摇身一变成小数乘法,让学生说怎么算?学生直接用上了简便算法,教者提出问题:对于小数乘法,能应用整数乘法运算定律吗?让学生明白,猜想不一定是对的还需验证,然后让学生验证。
这一设计,充分挖掘了教材的思想,把猜想验证这种科学研究方法恰当的运用到这一教学环节,学生经历了这一过程,收获了一种思想,同时也闪烁着智慧的火花,学生的验证,有的是通过计算两个式子的结果得出的,有的是根据小数点移动引起小数大小的变化验证的,有的'是根据小数的性质来验证的,老师不是简单的教教材,而是创造性的使用教材,这样的设计更符合小学生的思维特点,学生充满求知的欲望。
2、注重非智力因素,让学生感受成功。
教者整个课堂感情充沛,处处都闪烁着教者的教学智慧,板书的习题,如看谁算得快,看谁算得巧,一个快字和巧字,体现了教者的用心,快乐填一填,巧手算一算,运气题、眼光题这些习题,无不体现教材对情感的投入;教者对学生的评价,也是一个画在黑板上的笑脸,加上恰当的评价语言,整堂课,学生都感受到老师的点点关注,感受到了一种成功的愉悦。
【《运算定律》教学反思】相关文章:
运算定律教学反思04-06
《运算定律》教学反思06-16
《加法运算定律》教学反思04-16
《加法的运算定律》教学反思08-17
《加法运算定律》说课稿01-13
《混合运算》教学反思11-28
《数的运算》教学反思04-06
混合运算教学反思03-17
《数的运算》教学反思05-24