您的位置:群走网>教学资源>教学反思>《圆的认识》教学反思
《圆的认识》教学反思
更新时间:2022-10-23 10:01:06
  • 相关推荐
《圆的认识》教学反思

  作为一名优秀的人民教师,教学是我们的工作之一,借助教学反思我们可以快速提升自己的教学能力,教学反思应该怎么写呢?以下是小编为大家整理的《圆的认识》教学反思,仅供参考,大家一起来看看吧。

《圆的认识》教学反思1

  对称性是图形的重要性质。与其他平面图形相比,圆具有很好的对称性:它是一个轴对称图形,任意一条直径所在的直线都是它的对称轴;它是一个任意旋转对称图形:圆上的所有点绕圆心旋转任意一个角度后都在圆上。“圆的认识(二)”主要是使学生认识到圆的轴对称性,引导学生开展折纸活动,探索圆的轴对称性以及同一个圆里半径与直径的关系,通过与其他图形对称性的比较体会圆所具有的很好的'轴对称性。

  学生通过五年的学习,掌握了一些数学学习的方法,初步具备了一定的分析、思维能力。学生经过第一课时已经对圆有了初步的感性认识。在感知的基础上,通过动手操作让学生加深认识圆心、半径和直径,再引导学生对圆进行测量来发现直径和半径的存在,再而引出直径与半径的含义。然后通过学生自己测量来加深“直径与半径”的联系。为学生继续学习圆的周长和面积做好准备。孩子一般是对基础知识能比较熟练的掌握,但在知识的运用方面存在一定的缺陷,特别是如何运用有关的知识解答实际生活问题。本课的内容结合学生的实际,教学过程中设计了一些生活情境,很容易激发学生的学习兴趣,给学生提供了充分展示自己的机会,学生能围绕本节课的主题积极主动地去探求知识。

《圆的认识》教学反思2

  “圆的认识”一课选自小学数学教材第11册,是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。教材的编排思路是先借助实物揭示出“圆”,让学生感受到圆与现实的密切联系,再引导学生借助“实物”、“圆规”等多种方式画圆,初步感受圆的特征,并掌握用圆规画圆的方法,在此基础上,再引导学生通过折一折、画一画、量一量等活动,帮助学生认识直径、半径、圆心等概念,同时掌握圆的基本特征。这样的编排,学生对于圆的相关概念及特征的理解和把握一般都是建立在教师的明确指引和调控之下,学生相对独立的探索空间不够,而与此同时,学生对于圆所内涵的文化特性也无从感受、体验,对于圆在历史、文化、数学发展过程中与人类结下的不解之缘感受不深。

  基于这样的认识,我试图对本课的教学思路进行重新调整:一方面,通过拓展空间,将学生进一步置身于探索者、发现者的角色,引导学生在认识完圆的一些基本概念后,自主展开对于圆的特征的发现,并在交流对话中完善相应的认知结构;另一方面,我又借助媒体,将自然、社会、历史、数学等各个领域中的“圆”有效整合进本课教学,充分放大圆所内涵的文化特性,努力折射“冰冷”图形背后所散发的独特魅力。

  想起美国学者泽布罗夫斯基,曾因为“在凝望波涛的时候”而产生了写作《圆的历史》这一迷人著作的冲动,而我――一个普通的年轻教师,又是如何想起要在自己的课堂里打破常规、冲破樊篱,演绎“走进圆的世界”这一多少有些另类的教学案例的呢?如今回想起来,是平静水面上漾起的一圈圈涟漪?是阳光下朵朵绽放的金色向日葵?是慈母心中那轮永恒的明月?是“长河落日圆”中夕阳下落日的余辉?是伟大思想家墨子笔下“圆,一中同长也”和数学巨著《周髀算经》中“圆出于方,方出于矩”的召唤?是古老的阴阳太极图所给予的神秘诱惑?是“没有规矩,不成方圆”这一古训背后的力量?还是西方数学哲学中“圆是最美的图形”所带来的无限诱惑?似乎都是,又不完全是。只是有一种莫明的冲动,一直萦绕心头,那就是:怎样让数学课堂再厚重些、开阔些、深邃些、美丽些……藉此,想到了圆,继而,便有了“走进圆的世界”这一大胆尝试。

  ●过程描述

 [一]

 师:对于圆,同学们一定不会感到陌生吧?(是)生活中,你们在哪儿见到过圆形?

  生:钟面上有圆。

  生:轮胎上有圆。

  生:有些钮扣也是圆的。

  ……

  师:今天,张老师也给大家带来一些。见过平静的水面吗,(见过。)如果我们从上面往下丢进一颗小石子(播放动态的水纹,并配以石子入水的声音),你发现了什么?

  生:(激动地)水纹、水纹、圆……(声音此起彼伏)

  师:其实这样的现象在大自然中随处可见,让我们一起来看看。(伴随着优美的音乐,阳光下绽放的向日葵、花丛中五颜六色的鲜花、光折射后形成的美妙光环、用特殊仪器拍摄到的电磁波、雷达波、月球上的环形山等画面一一展现在学生的眼前,见图①)从这些现象中,你同样找到圆了吗?

  图①

  生:(惊异地,慨叹地)找到了。

  师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?

  生:(激动地)好!

  [二]

师:俗话说,“没有规矩,不成方圆”。意思是说,如果没有圆规,是――

  生:――画不出圆的。

  师:同学们都准备了一把圆规,你能试着用它在白纸上画出一个圆吗?

  生:能。

  (学生尝试用圆规画圆,交流,明确圆规画圆的基本方法。)

  师:可要是真没有了圆规,比如在圆规发明之前,我们就真画不出一个圆了吗?

  生:不可能。

  师:今天,每个小组还准备了很多其他的材料。你能利用这些材料,试着画出一个圆吗?

  生:能。

  (学生以小组为单位,利用手中的工具和材料画圆。)

  师:张老师发现,每个小组都有了各自精彩的创造。让我们一起来分享。

  生:我们组将圆形的瓶盖按在白纸上,沿着瓶盖的外框画了一个圆。

  师:那叫“拷贝不走样”。(生笑)

  生:我们手中的三角板中就有一个圆形窟窿,利用它,很方便地画出了一个圆。

  师:真可谓就地取材,挺好!(笑)

  生:我们组在绳子的一端系一支铅笔,另一端固定在白纸上,绳子绷紧,将铅笔绕一圈,也画出了一个圆。

  师:看得出,你们组的创作已经初步具备了圆规的雏形。

  生:我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。

  师:尽管这一方法没有能在白纸上最终“画”出一个圆,但他们的创造仍然是十分美妙的,不是吗?(生热烈鼓掌)

  师:可是,既然不用圆规,我们依然创造出了这么多画圆的方法,那么俗语中为什么还会有“没有规矩,不成方圆”的说法呢?

  生:我想,大概是古时候的人们没想到这些方法吧?(生笑)

  生:我觉得不是这样,因为,或许一开始,“没有规矩,不成方圆”指的是没有圆规和“矩”画不出方和圆,但是流传到后来,它的意思已经发生了改变,不再仅仅指原来的意思了,而是指很多事情,必须要讲究规矩,遵循章法。(不少同学投以赞许的目光)

  师:真没想到,一条普通的数学规律,经过千年流传,竟逐渐成为我们生活中一条重要的人生准则。当然,同学们能够利用各自的智慧,成功演绎“没有规矩,仍成方圆”,足以说明大家不凡的创造力了。

  [三]

(通过自学,学生认识完半径、直径、圆心等概念后。)

  师:学到现在,关于圆,该有的知识我们也探讨得差不多了。那你们觉得还有没有什么值得我们深入地去研究?

  生:有(自信地)。

  师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。第二,实在没啥研究了,别急,老师还为每一小组准备一份研究提示,到时候打开看看,或许对大家的研究会有所帮助。

  (随后,伴随着优美的音乐,学生们以小组为单位,展开研究,并将研究的成果记录在教师提供的“研究发现单”上,并在小组内先进行交流)

  师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!

  生:我们小组发现圆有无数条半径。

  师:能说说你们是怎么发现的吗?

  生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。

  生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。

  生:我们组没有折,也没有画,而是直接想出来的。

  师:噢?能具体说说吗?

  生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?

  师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了?

  生:不需要了,因为道理是一样的。

  师:关于半径或直径,还有哪些新发现?

  生:我们小组还发现,所有的半径或直径长度都相等。

  师:能说说你们的想法吗?

  生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。

  生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。

  生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。

  生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。

  师:大家觉得他的这一补充怎么样?

  生:有道理。

  师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?

  生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。

  师:你们是怎么发现的?

  生:我们是动手量出来的。

  生:我们是动手折出来的。

  生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽……

  师:看来,大家的想象力还真丰富。

  生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。

  师:圆的大小和它的半径有关,那它的位置和什么有关呢?

  生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。

  生:我们组还发现,圆是世界上最美的图形。

  师:能说说你们是怎样想的.吗?

  生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机

  生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶……

  师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示。没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?

  生:好。

  [四]

 师:其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:“圆,一中同长也。”所谓一中,就是指一个――

  生:圆心。

  师:那同长又指什么呢?大胆猜猜看。

  生:半径一样长。

  生:直径一样长。

  师:这一发现,和刚才大家的发现怎么样?

  生:完全一致。

  师:更何况,我古代这一发现要比西方整整早一千多年。听到这里,同学们感觉如何?

  生:特别的自豪。

  生:特别的骄傲。

  生:我觉得我国古代的人民非常有智慧。

  师:其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的(动画演示:圆向方的渐变过程,如图②)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?

  图②

  生:圆的直径是6厘米。

  生:圆的半径是3厘米。

  师:说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图③),认识吗?

  生:阴阳太极图。

  师:想知道这幅图是怎么构成的吗?(想!)原来它是用一个大圆和两个同样大的小圆组合而成的(出示图④)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?

  图③ 图④

  生:小圆的直径是6厘米。

  生:大圆的半径是6厘米。

  生:大圆的直径是12厘米。

  生:小圆的直径相当于大圆的半径。

  ……

  师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?

  生:我觉得石子投下去的地方就是圆的圆心。

  生:石子的力量向四周平均用力,就形成了一个个圆。

  生:这里似乎包含着半径处处相等的道理呢。

  师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。

  师:其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――

  (伴随着优美的音乐,如下的画面一一展现在学生眼前:生活中的圆形拱桥、世界著名的圆形建筑、中国著名的圆形景德镇瓷器、中国民间的圆形中国节、中国传统的圆形剪纸、世界著名的圆形标志设计等等,如图⑤。)

  图⑤

  师:感觉怎么样?

  生:我觉得圆真是太美了!

  生:我无法想象生活中如果没有了圆,将会是什么样子。

  生:生活中因为有了圆而变得格外多姿多彩。

  ……

  师:而这,不正是圆的魅力所在吗?

  [五]

  师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳……而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”……而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!

  ●自我反思

 多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为障碍学生数学学习的绊脚石。事实上,造成这一现象的原因是多方面的,而一味注重数学知识的传递、数学技能的训练,漠视数学本身所内涵的鲜活的文化背景,漠视浸润在数学发展演变过程中的人类不断探索、不断发现的精神本质、力量以及数学与人类社会(包括自然的、历史的、人文的)千丝万缕的联系,显然应看成造成这一现象的重要原因之一。

  众所周知,数学本质上是一种文化,《数学课程标准》在前言中明确指出:数学的“内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我立足从过程与凝聚两个角度进行探索。“圆的认识”一课正是我所作的一次粗浅尝试。

  数学发展到今天,人们对于她的认识已经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程得以自然建构与生成。

  在承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。藉此,教学伊始,我们选择从最最常见的自然现象引入,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,从宏观的视野丰富学生的认识视域;最后,我们更是借助“解释自然中的圆”和“欣赏人文中的圆”等活动,帮助学生在丰富多彩的数学学习中层层铺染、不断推进,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有的习惯思维与阴影,真正美丽起来。

  当然,“理想的课程”如何转化为“现实的课程”,这当中仍然有许多值得深切关注的话题。就拿本课教学而言,实施下来,应该说,学生对于“圆”这一冰冷图形背后所蕴含的人文的、文化的特性的感受还是十分真切的,然而,作为问题的另一方面,对于基本的数学知识、数学技能的掌握,在教学后的反馈中也确实暴露出了一定的问题,尤其表现在部分学生对于圆的半径、直径等概念的理解不够到位,对于直径、半径及其与圆之间的关系的掌握不够透彻等。因而,今后我们在数学课堂演绎数学文化、数学精神等层面的同时,如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,应该还是有一定的启示意义的。

《圆的认识》教学反思3

  在本节课的设计中,我创设了一个知识性的情境自然引入教学,用学生能理解、能接受的自主探索、自主发现的方式来进行教学,给学生呈现了最自然的、最易接受的方法,使学生在课堂上自然地学习知识。

  课一开始,通过摸“圆”游戏,从直线图形中自然引出曲线图形——圆,让学生整体感受“圆”的光滑、饱满、匀称,为后面研究圆的特征做好铺垫。同时,揭示了在平面图形中圆最美,激发了学生探究“圆”的奥秘的兴趣。

  学生通过整体认识圆知道了一切平面图形中圆最美,那么,圆为什么最美,圆中有哪些奥秘?这是学生非常感兴趣的,用数学内在的魅力激发学生学习的好奇心,使他们始终处于一种定向的认知活跃状态,以积极的姿态摄取新知,满足了学生“好奇”、“好学”的心理需求。这时,我没有按照教材的编排先教学生如何画圆,而是自然地进入了圆的特征的自主探究。现代建构主义认为,知识并不能简单地由教师或其他人传授给学生,而只能由每个学生依据自身已有的知识和经验主动地加以建构。我引导学生在画画、量量、比比、折折等一系列活动中,认真观察、动手操作,积极思考、主动探索、合作交流,自主总结发现结论,探究圆的本质特征,学生经历了圆的有关知识的形成过程,满足了“成功”的心理需求,增强了学习的信心。

  学生已经认识了圆的一些特征,知道了为什么圆最美,对于画圆一定是跃跃欲试了。这时,自然地引入了画圆。通过画圆学生认识到半径决定圆的大小、圆心决定圆的位置,并且在画圆的过程中加深了对圆的本质特征“一中同长”的理解。

  学生学习了圆的有关知识,自然想用学到的圆的知识解决问题。这时,我出示了生活中的相关问题,学生解决问题的积极性很高。如车轮为什么是圆形的?车轴应装在哪里?有不少同学做出了合理的解释。再如学生在解决“怎样画一个大圆”的实际问题时跃跃欲试、神采飞扬,想出简便而又实用的方法,使他们的个性得到彰显、能力得到提升,享受到了成功的喜悦。引导学生用圆的'知识解释生活中的现象、解决生活中的问题,让学生感受了圆在生活中的应用,感受到了数学的价值,培养了学生应用新知解决生活中的实际问题的能力。

  圆的周长的教学反思

  1、授人以鱼,不如授人以渔。

  圆的周长是小学阶段最后掌握的有关周长的知识,此时学生已有长、正方形周长作基础,学生已有能力自己去研究这部分知识。所以在引入部分,我设计了正方形与圆形的龟兔赛跑路线,既能激发学生兴趣,又为圆周长的学习打下伏笔。通过比赛是否公平引出周长概念。问:正方形周长与谁有关?有什么关系?为学生研究圆周长指明方向。这种研究方法对研究圆的周长有效,对发规其他知识也有效,这节课不单是传授知识,更重要的是传授学习方法。

  2、层层深入,突破难点

  本节课有两个难点:如何测量出圆的周长?发现圆的周长总是它直径的3倍多一些。我采用了逐一突破的方法,层层深入。首先让学生发现尺不能直接测量出圆的周长。从而使学生想出用测绳、用滚动等方法化曲为直。这时候教师再让学生测量投影上的圆、运动的圆,学生面前又出现新的问题,这使学生感到必须探索一个带有普遍性的规律。这时我让学生分组讨论,圆的周长与谁有关。再进行小组合作研究周长与直径的倍数关系。

  3、充分发挥合作意识

  现代人必备的素质之一是合作精神,因此本节课多次让学生合作去发现、解决问题,同时我及时给予帮助指导。不仅让学生学会合作,而且让学生在合中提高效率。如在测量 圆的周长与直径的倍数时,提醒学生分工,但测量遇到不便时能合作操作,既提高效率,又保障准确性。

  4、努力方向

  上课中发现学生的动手能力较弱,操作时动作慢并较僵硬,这说明在平时的课堂中缺乏这方面的培养和训练。我想在以后的教学中应尽可能创造条件,培养学生的动手能力。教师的基本素质有待提高,如教学语言不够生动活泼,板书不够工整、漂亮,在教学设计上还能再加以创新,更好地调动学生的学习激情。

《圆的认识》教学反思4

  《圆的认识》是一节非常经典的公开课,上这节课前,我也是翻阅浏览了大量的教学设计与教学视频。《圆的认识》是在学生直观认识圆和已经较系统地认识了平面上直线图形的基础上进行展开的。为引导学生动手、动脑,主动参与到课堂中来,我从以下三点来谈谈我对本节课的设计。

  一、轻巧的导入,创造积极和谐的教学情境

  《数学课程标准》倡导:“要选取密切联系学生生活的,生动的、有趣的、新颖的素材,且素材应当来源于学生的现实。”我依据课标,结合学生自身的生活,课初,我借用课件给学生们提供了有关于圆的图片的欣赏活动,然后引出生活中有哪些物体是圆形的?问题一出,立刻激起刚刚受完美景洗礼的学生们的快速思考,回到了自己的生活中并畅所欲言,我不失时机的引出了本节课的研究主题:“圆的认识”。

  这样熟悉的导入,使课堂气氛变得积极和谐,维持学生的求知、思考的热情欲望,使课堂有序的地继续开展。

  二、以学生为中心,让学生主动参与知识的形成过程

  在教学过程中,无论是认识圆心、半径、直径,还是在学习圆的画法上,都安排了学生充分参与的实践活动,遵循理念扮演着主导的角色,以学生探索新知为核心,借着问题、言语等多方面,为学生构建了自我展示、合作交流的平台。通过折一折、画一画、议一议等独立自主、合作交流的学习方式进行探究。培养了学生的主动参与、乐与探究、勤于思考,以及分析和解决问题的能力。

  三、使学生感受数学源于生活又能用于生活的道理

  在课末,介入学生生活的`思索,运用课本提供的素材,充分利用学生已有的生活经验。小组同学说一说:车轮为什么是圆形的?车轮应装在什么位置?引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。使学生畅所欲言,再通过课件动态演示,让学生感受正方形的车轮、椭圆形的车轮转动的感觉,从而使学生明白因为圆心到圆上任意一点距离都相等,所以只有把车轮装在圆心处,才能使车辆保持平稳的行驶。

  如此挑战性强、趣味性浓的话题一出,激发了学生浓厚的兴趣,学生在思索和畅所欲言的过程中,培养了学生语言表达能力和想象能力。学生从学有用的数学延伸到自己的生活,感悟到圆在生活中的重要作用。

  课后,通过与同事的交流和自己对本节课的思索,我发现有些地方还存在一些不足。部分学生对于在同一圆内直径、半径的关系掌握不够透彻,对于课堂上动态生成的信息处理不灵活,以至于处理课堂练习时时间有些不够用。

  细节决定一切,要上一节生动的、令人难忘的数学课,我还需要不断磨练,在未来的工作中,我将弥补以上不足之处,提高个人理论素养,使自己的教学趋于完美。

《圆的认识》教学反思5

  教学内容

  苏教版九年义务教育小学数学第十一册第115~118页。

  目标预设

  知识技能在尝试画圆的过程中领悟画圆的方法,会正确使用圆规画圆,能结合自学、交流、探索等活动,准确理解“圆心、半径、直径”等概念。

  数学思考引导学生经历探索、发现、创造、交流等丰富多彩的数学活动过程,并在这一过程中深刻把握圆的特征,发展学生的空间观念和数学交流能力。

  问题解决使学生学会从数学的角度认识世界、解释生活,逐步形成“数学地思维”的习惯。

  情感态度使学生初步体会圆的神奇及其所包蕴的美学价值。

  教学过程

  一、现象激趣,引入探究

  1.交流:生活中,你在哪儿见到过圆?通过交流,使学生感受到生活中圆无所不在。

  2.结合波纹、向日葵等事物,进一步带领学生领略圆的神奇,激发学生的探究欲望。

  二、分层探究,体悟特征

  1.画圆剪圆──首次感知。

  (1)学生尝试画圆。通过交流,在师生互动过程中帮助学生掌握圆规画圆的方法,并将“画指定半径的圆”这一要求巧妙地孕伏其中。

  (2)剪圆。既帮助学生感知圆的特征,又为下面的探究活动准备素材。

  2.认识概念──初尝成功。

  结合学生的原有经验和教师提供的“学习材料”,引导学生通过自学、交流、操作等活动。自主建构起对圆心、半径、直径等概念的理解。为探究活动做好认知层面的铺垫。

  1.开放探究──体验特征。

  先通过交流,引导学生初步明确探究方向。在此基础上,引导学生以小组为单位,结合手中的圆片和教师提供的相关支持性材料,共同研究圆的特征,并将研究过程中的发现记录下来。教师以合作者、组织者的身份介入学生的研究活动。对有困难的研究小组提供支持。并收集学生中有价值的发现,以备交流。

  2.交流展示──共享发现。

  将学生探索过程中生成的具有代表性的发现汇集成“我们的发现”,并引导全班学生相互交流。共同分享,深化理解,直至建构起对于圆的完整、系统的认识。

  二、实践拓展,文化渗透

  1.基本练习。

  (1)判断:图中的哪一条线段是圆的半径或直径?(图略)

  (2)口答:根据半径求出直径。根据直径求出半径。(题略)

  (说明:本项练习没有单独设置。而是结合上面的“交流展示”环节,在师生互动的过程中自然穿插。)

  2.史料链接。

  介绍我国数学史上关于圆的研究记载,比如“圆,一中同长也”(《墨经》)、“圆出于方,方出于矩”(《周髀算经》)、“没有规矩,不成方圆”(《周髀算经》),拓宽学生的数学视野。此外,教师结合相应史料的介绍,比如“圆出于方,方出于矩”,将一些联想题、开放题自然穿插其中,既渗透了数学历史、文化,又培养了学生的思维能力与想像能力。

  3.解释应用。

  引导学生运用圆的特征解释生活中常见的自然现象,比如“水纹为什么是圆形的”,“盛开的向日葵为什么是圆形的”等,帮助学生进一步深化对圆的.特征的认识。并学会从数学的角度观察和理解生活。

  4.圆与人文。

  借助多媒体,直观地为学生展示圆在人类历史、生活、文化、审美等各个层面的广泛应用,比如“圆与桥梁设计”、“圆与中国剪纸”、“圆与中国结”、“圆与中外建筑”、“圆与著名标志设计”等,引导学生感受圆与人类生活的密切关联,体会圆的美学与人文价值。

  教学反思

  数学也是一种文化,《数学课程标准(实验稿)》在前言中明确指出:“数学的内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我们着眼“过程”与“凝聚”进行了初步的探索。

  1.数学发展到今天,人们对于她的认识己经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程中得以自然建构与生成。

  2.承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。基于此,教学伊始,我们选择从最常见的自然现象引人,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,拓宽学生的知识视野;最后,我们更是借助“解释自然的圆”和“欣赏人文的圆”等活动,帮助学生在丰富多彩的数学学习中不断积累感受、提升认识,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源

《圆的认识》教学反思6

  学生画圆的方法比较集中:(1)利用圆形轮廓描圆(2)利用图钉和线画圆。而其中第二种画圆方法操作起来比较难,非常明显的凸显出来。

  本节课的“圆心、半径”知识的教学没有过去的简单讲授,代之的是充分的活动。第一次画圆,学生借助身边的物体,尝试通过描圆形表面的轮廓来进行,以此建立圆的外形的认识;第二次借助绳子画圆,让学生感受不是圆的物体也能画圆;第三次用圆规画圆,凭借积累的生活经验,规范学生的用圆规画圆,以此初步形成圆的概念,在学生尝试画圆的过程中,得出圆心和半径。然后通过画大小不同的圆,巩固画圆过程的同时,让学生体会到:圆心确定圆的位置,半径决定圆的大小,同一个圆里有无数条半径,并且每条半径的长度都相等。课堂上操作成为学生学习的主要方式。学生在操作中感悟,在操作中探究。学生在这样的活动中体验了学习的乐趣,此时的数学是那样的生动具体,学生乐学,高兴学。

  这节课的数学教学,从生活中来,到生活中去。以活动为载体,让学生在充分的'活动中感受数这节课的数学教学,从生活中来,到生活中去。以活动为载体,让学生在充分的活动中感受数学,探究数学,应用数学,发展学。学生在数学活动的探索中感受到了数学的价值和学习数学的乐趣

《圆的认识》教学反思7

  本节课的设计主要秉承“以学定教、活动导学”的理念进行教材重组,变被动的概念教学课为主动建构的探究课,突显“学为中心”。本课有以下三个特点:

  一、提纲挈领,拥有全局视角

  圆的认识一课难点较多,内容分散,以往只分版块教学而没有互相关联,从学生掌握的情况来看,效果不理想。因此在全局视角下,对本课进行相应的分析,并作出相应的教学整合。将圆的概念引入教学,联系画圆、认识圆的各部分、探索半径与直径特点等几个内容,起到提纲挈领的`作用。相应剔除“圆是轴对称图形、利用轴对称找圆心”等关联较小的内容,为整节课的合作探究提供时间上的保障。整节课学生能围绕圆的概念建构知识,对圆的认识有整体上的把握。

  二、辨析归纳,倡导自主探究

  圆是用发生式定义方式生成概念的。圆的认识一课涉及概念较多,以往学生习惯于被动接受知识,效果堪忧。本节课特别重视每个概念的发生过程,通过提供一系列利于对比的素材,引领学生不断辨析归纳、自主探究,把握圆的概念本质,做到真正意义上的“学”。

  三、基于操作,聚焦核心素养

  从导入“生活找圆”寻找运动形成的圆到“自主建构”对比辨析合作探究圆的概念,再到“画圆”利用各种材料尝试画圆,以及“探索半径与直径的特点”通过画一画、量一量、推一推发现特点,以及综合练“圆的大小与位置由什么决定”中通过对比与几何画板演示,整节课基于操作,结合想象,研究动态生成的圆,重视空间观念的的培养,逐步实现直观想象素养的发展。其中“自主建构圆的概念”强化了逻辑推理素养的培养。这一个环节中通过测量多个任意动点与定点的距离,引导学生发现圆的概念,思维核心指向概念本质属性,有效培养学科素养。

《圆的认识》教学反思8

  通过一节课的学习,我发现了一些成功之处:

  一、将数学融入生活,让学生学习生活中的数学

  学生在日常生活中对圆已经有了比较多的感性认识,因此,在教学时尽量结合学生的生活实际,让学生在熟悉、亲切的氛围中自然地进入到课堂学习中。

  二、在生活中体现数学

  在本节课中,为学生提供操作的机会,让学生用手中图形物体画一画,折一折形成圆形纸片,并在桌面上滚动,得到圆易滚动的特点;而且画出的圆大小不同,是因为实物不同。()学生通过实践活动体会数学来源于生活。

  合作学习是学生学习数学的重要形式。在教学中多次采用了小组合作的'学习方式,有意识的为学生创设交流的平台,鼓励学生发表自己的意见,并与组员进行交流,培养了学生合作的意识。通过了解中国传统文化中的圆使学生体会传统文化的美,培养学生热爱传统文化的情感和民族自豪感。通过将学生的名字连成一个圆,使学生更深入理解圆的内涵,培养学生集体主义精神。

  不足之处:

  学生手里有圆,互相交流,但是在折一折操作时学生跑去和其他小组说话,有的快有的慢,滚动起来收拾不住。

【《圆的认识》教学反思】相关文章:

《圆认识》教学反思03-18

《圆的认识》的教学反思03-21

《认识圆》教学反思04-08

《 圆的认识》教学反思04-08

圆的认识教学反思04-09

“圆的认识”教学反思04-10

圆的初步认识教学反思04-09

圆的认识二教学反思04-16

《圆的认识》教学反思15篇03-12